|
Alda, J., Rico-García, J. M., López-Alonso, J. M., & Boreman, G. (2005). Optical antennas for nano-photonic applications. Nanotech., 16(5), S230–S234.
Abstract: Antenna-coupled optical detectors, also named optical antennas, are being developed and proposed as alternative detection devices for the millimetre, infrared, and visible spectra. Optical and infrared antennas represent a class of optical components that couple electromagnetic radiation in the visible and infrared wavelengths in the same way as radioelectric antennas do at the corresponding wavelengths. The size of optical antennas is in the range of the detected wavelength and they involve fabrication techniques with nanoscale spatial resolution. Optical antennas have already proved and potential advantages in the detection of light showing polarization dependence, tuneability, and rapid time response. They also can be considered as point detectors and directionally sensitive elements. So far, these detectors have been thoroughly tested in the mid-infrared with some positive results in the visible. The measurement and characterization of optical antennas requires the use of an experimental set-up with nanometric resolution. On the other hand, a computation simulation of the interaction between the material structures and the incoming electromagnetic radiation is needed to explore alternative designs of practical devices.
|
|
|
Bharadwaj, P., Deutsch, B., & Novotny, L. (2009). Optical Antennas. Adv. Opt. Photon, 1, 438–483.
Abstract: Optical antennas are an emerging concept in physical optics. Similar to radiowave
and microwave antennas, their purpose is to convert the energy of free propagating radiation to localized energy, and vice versa. Optical antennas exploit the unique properties of metal nanostructures, which behave as strongly coupled plasmas at ptical frequencies. The tutorial provides an account of the historical origins and the basic concepts and parameters associated with optical antennas. It also reviews recent work in the field and discusses areas of application, such as light-emitting devices, photovoltaics, and spectroscopy.
|
|
|
Boreman, G. D. (2001). A Users guide to IR detectors. In Proc. SPIE (Vol. 4420, pp. 79–90).
Abstract: This paper will guide the first-time user toward proper selection and use of IR detectors for applications in industrial inspection, process control, and laser measurements.
|
|
|
Boreman, G. D. (1997). Infrared microantennas. SPIE, 3110, 882–885.
Abstract: We present results of mesurments of the polarization response of asymetric spiral antennas coupled Ni-NiO-Ni diodes, over the wavelength range 10.2 to 10.7 μm. The feed structure of the antenna imposes an elliptical polarization singature that is different from the circular polarization expected from a symmetric spiral. We develop a lossy-transmission-line model yielding the measured polarization response. A combination of a balanced and an unbalanced mode is required. Reflected current waves from the arm ends are significant.
|
|
|
Brown, E. R., Lee, A. W. M., Navi, B. S., & Bjarnason, J. E. (2006). Characterization of a planar self-complementary square-spiral antenna in the THz region. Microwave Opt Technol Lett, 48(3), 524–529.
Abstract: This paper describes a compact, self-complementary square-spiral antenna on a GaAs substrate with a broadside high-directivity (~9 dB) frequency-independent pattern when coupled through a silicon hyperhemisphere. The driving-point resistance undulates between ~00 and 300Ω from 200 GHz to 1 THz—much higher than the 72Ω value from Booker's modified formula, but quite beneficial for coupling to high-impedance broadband devices
|
|