TY - JOUR AU - Shcherbatenko, M. AU - Lobanov, Y. AU - Semenov, A. AU - Kovalyuk, V. AU - Korneev, A. AU - Ozhegov, R. AU - Kazakov, A. AU - Voronov, B. M. AU - Goltsman, G. N. PY - 2016 DA - 2016// TI - Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength T2 - Opt. Express JO - Opt. Express SP - 30474 EP - 30484 VL - 24 IS - 26 KW - NbN SSPD mixer KW - SNSPD AB - Here, we report on the successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the local oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth (also referred to as response or conversion bandwidth) was limited by the spectral band of a single-photon response pulse of the detector, which is proportional to the detector size. We observed a gain bandwidth of 65 MHz and 140 MHz for 7 x 7 microm[super:2] and 3 x 3 microm[super:2] devices, respectively. A tiny amount of the required local oscillator power and wide gain and noise bandwidths, along with unnecessary low noise amplification, make this technology prominent for various applications, with the possibility for future development of a photon counting heterodyne-born large-scale array. SN - 1094-4087 UR - http://www.ncbi.nlm.nih.gov/pubmed/28059394 UR - https://doi.org/10.1364/OE.24.030474 DO - 10.1364/OE.24.030474 LA - English N1 - PMID:28059394 ID - Shcherbatenko_etal2016 ER -