PT Journal AU Lipatov, A Okunev, O Smirnov, K Chulkova, G Korneev, A Kouminov, P Gol'tsman, G Zhang, J Slysz, W Verevkin, A Sobolewski, R TI An ultrafast NbN hot-electron single-photon detector for electronic applications SO Supercond. Sci. Technol. JI Supercond. Sci. Technol. PY 2002 BP 1689 EP 1692 VL 15 IS 12 DI 10.1088/0953-2048/15/12/311 DE NbN SSPD; SNSPD; QE; jitter; dark counts AB We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm. ER