| 
Citations
 | 
   web
Anthore, A., Pothier, H., & Esteve, D. (2003). Density of states in a superconductor carrying a supercurrent. Phys. Rev. Lett., 90(12), 127001 (1 to 4).
toggle visibility
Arutyunov, K. Y., Ramos-Alvarez, A., Semenov, A. V., Korneeva, Y. P., An, P. P., Korneev, A. A., et al. (2016). Superconductivity in highly disordered NbN nanowires. Nanotechnol., 27(47), 47lt02 (1 to 8).
toggle visibility
Arutyunov, K. Y., Ramos-Álvarez, A., Semenov, A. V., Korneeva, Y. P., An, P. P., Korneev, A. A., et al. (2016). Quasi-1-dimensional superconductivity in highly disordered NbN nanowires. arXiv:1602.07932v1 [cond-mat.supr-con].
toggle visibility
Bell, M., Sergeev, A., Goltsman, G., Bird, J., & Verevkin, A. (2006). Transition-edge sensors based on superconducting nanowires. In Proc. APS March Meeting (B38.00001).
toggle visibility
Dauler, E., Kerman, A., Robinson, B., Yang, J., Voronov, B., Goltsman, G., et al. (2009). Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. J. Modern Opt., 56(2), 364–373.
toggle visibility
de Lara, D. P., Ejrnaes, M., Casaburi, A., Lisitskiy, M., Cristiano, R., Pagano, S., et al. (2008). Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins). J. Low Temp. Phys., 151(3-4), 771–776.
toggle visibility
Goltsman, G. (2019). Quantum-photonic integrated circuits. In Proc. IWQO (pp. 22–23).
toggle visibility
Korneev, A., Divochiy, A., Marsili, F., Bitauld, D., Fiore, A., Seleznev, V., et al. (2008). Superconducting photon number resolving counter for near infrared applications. In P. Tománek, D. Senderáková, & M. Hrabovský (Eds.), Proc. SPIE (Vol. 7138, 713828 (1 to 5)). Spie.
toggle visibility
Korneeva, Y., Florya, I., Vdovichev, S., Moshkova, M., Simonov, N., Kaurova, N., et al. (2017). Comparison of hot-spot formation in NbN and MoN thin superconducting films after photon absorption. In IEEE Transactions on Applied Superconductivity (Vol. 27, 5).
toggle visibility
Ovchinnikov, Y. N., & Varlamov, A. A. (2009). Fluctuation-dissipative phenomena in a narrow superconducting channel carrying current below critical. arXiv, 0910.2659v1, 1–4.
toggle visibility
Pekker, D., Shah, N., Sahu, M., Bezryadin, A., & Goldbart, P. M. (2009). Stochastic dynamics of phase-slip trains and superconductive-resistive switching in current-biased nanowires. Phys. Rev. B, 80, 214525 (1 to 17).
toggle visibility
Peltonen, J. T., Astafiev, O. V., Korneeva, Y. P., Voronov, B. M., Korneev, A. A., Charaev, I. M., et al. (2013). Coherent flux tunneling through NbN nanowires. Phys. Rev. B, 88(22), 220506 (1 to 5).
toggle visibility
Pothier, H., Guéron, S., Birge, N. O., Esteve, D., & Devoret, M. H. (1997). Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett., 79(18), 3490–3493.
toggle visibility
Rath, P., Vetter, A., Kovalyuk, V., Ferrari, S., Kahl, O., Nebel, C., et al. (2016). Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps. In J. - E. Broquin, & G. N. Conti (Eds.), Integrated Optics: Devices, Mat. Technol. XX (Vol. 9750, pp. 135–142). Spie.
toggle visibility
Romijn, J., Klapwijk, T. M., Renne, M. J., & Mooij, J. E. (1982). Critical pair-breaking current in superconducting aluminum strips far below Tc. Phys. Rev. B, 26(7), 3648–3655.
toggle visibility