toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smirnov, K.; Vachtomin, Y.; Divochiy, A.; Antipov, A.; Goltsman, G. url  openurl
  Title The limitation of noise equivalent power by background radiation for infrared superconducting single photon detectors coupled to standard single mode optical fibers Type Journal Article
  Year 2015 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 5 Pages  
  Keywords NbN SSPD  
  Abstract We investigated the minimum level of the dark count rates and noise equivalent power of superconducting single photon detectors coupled to standard single mode optical fibers. We found that background radiation limits the minimum level of the dark count rates. We also proposed the effective method for reducing background radiation out of the required spectral range of the detector. Measured noise equivalent power of detector reaches 8.9×10-19 W×Hz1/2 at a wavelength of 1.55 μm and quantum efficiency 35%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 14 pages Approved no  
  Call Number Serial 1813  
Permanent link to this record
 

 
Author Zolotov, P. I.; Vakhtomin, Yu. B.; Divochiy, A. V.; Seleznev, V. A.; Smirnov, K. V. url  isbn
openurl 
  Title Technology development of resonator-based structures for efficiency increasing of NBN detectors of IR single photons Type Journal Article
  Year 2016 Publication Proc. 5th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 5th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 115-116  
  Keywords NbN SSPD  
  Abstract This paper presents a technology of fabrication of NbN superconductive single- photon detectors, using resonator structures. The main results are related to optimization of the process of NbN sputtering over substrate with metallic mirrors and SiO 2 /Si 3 N 4 layers /4 thick. Investigation of the quantum efficiency of fabricated devices at 1.6 K on 1.55 μm showed triple-magnified value compared to standard Si/NbN structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2215-8 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2015/12/FIO2016-Sbornik.pdf Разработка технологии создания резонаторных структур для увеличения квантовой эффективности NBN детекторов ИК-фотонов Approved no  
  Call Number Serial 1811  
Permanent link to this record
 

 
Author Schroeder, E.; Mauskopf, P.; Pilyavsky, G.; Sinclair, A.; Smith, N.; Bryan, S.; Mani, H.; Morozov, D.; Berggren, K.; Zhu, D.; Smirnov, K.; Vakhtomin, Y. url  doi
openurl 
  Title On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs Type Conference Article
  Year 2016 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9907 Issue Pages 99070P (1 to 13)  
  Keywords SPAD, NbN SSPD applications, SNSPD  
  Abstract We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical and Infrared Interferometry and Imaging V  
  Notes Approved no  
  Call Number Serial 1809  
Permanent link to this record
 

 
Author Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K. url  doi
openurl 
  Title Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
  Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.  
  Volume 781 Issue Pages 012011 (1 to 5)  
  Keywords WSi, NbN SSPD, SNSPD  
  Abstract Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-899X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1799  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Dryazgov, M. A.; Simonov, N. O.; Zolotov, P. I.; Korneev, A. A. url  doi
openurl 
  Title Influence of sheet resistance and strip width on the detection efficiency saturation in micron-wide superconducting strips and large-area meanders Type Journal Article
  Year 2021 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 34 Issue 8 Pages 084001  
  Keywords NbN SSPD, SMSPD  
  Abstract We report our study of detection efficiency (DE) saturation in wavelength range 400 – 1550 nm for the NbN Superconducting Microstrip Single-Photon Detectors (SMSPD) featuring the strip width up to 3 μm. We observe an expected decrease of the $DE$ saturation plateau with the increase of photon wavelength and decrease of film sheet resistance. At 1.7 K temperature DE saturation can be clearly observed at 1550 nm wavelength in strip with the width up to 2 μm when sheet resistance of the film is above 630Ω/sq. In such strips the length of the saturation plateau almost does not depend on the strip width. We used these films to make meander-shaped detectors with the light sensitive area from 20×20μm2 to a circle 50 μm in diameter. In the latter case, the detector with the strip width of 0.49 μm demonstrates saturation of DE up to 1064 nm wavelength. Although DE at 1310 and 1550 nm is not saturated, it is as high as 60%. The response time is limited by the kinetic inductance and equals to 20 ns(by 1/e decay), timing jitter is 44 ps. When coupled to multi-mode fibre large-area meanders demonstrate significantly higher dark count rate which we attribute to thermal background photons, thus advanced filtering technique would be required for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1793  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: