|   | 
Details
   web
Records
Author Sobolewski, R.; Verevkin, A.; Gol’tsman, G. N.
Title Superconducting optical single-photon detectors Type Conference Article
Year 2004 Publication CLEO/QELS Abbreviated Journal (down) CLEO/QELS
Volume Issue Pages IThD1
Keywords SSPD, QE, jitter, dark counts
Abstract We review the development of superconducting single-photon detectors. The devices are characterized by experimental quantum efficiency of ~8% for infrared photons, counting rate ~2 GHz, 18 ps jitter, and <0.01 per second dark counts.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sobolewski:04 Serial 1489
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Lo, W.; Wilsher, K.
Title Infrared picosecond superconducting single-photon detectors for CMOS circuit testing Type Conference Article
Year 2003 Publication CLEO/QELS Abbreviated Journal (down) CLEO/QELS
Volume Issue Pages Cmv4
Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Electron beam lithography; Infrared detectors; Infrared radiation; Quantum efficiency; Single photon detectors; Superconductors
Abstract Novel, NbN superconducting single-photon detectors have been developed for ultrafast, high quantum efficiency detection of single quanta of infrared radiation. Our devices have been successfully implemented in a commercial VLSI CMOS circuit testing system.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1518
Permanent link to this record
 

 
Author Xu, Y.; Zheng, X.; Williams, C.; Verevkin, A.; Sobolewski, R.; Chulkova, G.; Lipatov, A.; Okunev, O.; Smirnov, K.; Gol’tsman, G. N.
Title Ultrafast superconducting hot-electron single-photon detector Type Conference Article
Year 2001 Publication CLEO Abbreviated Journal (down) CLEO
Volume Issue Pages 345
Keywords NbN SSPD, SNSPD
Abstract Summary form only given. The current most-pressing need is to develop a practical, GHz-range counting single-photon detector, operational at either 1.3-/spl mu/m or 1.55-/spl mu/m radiation wavelength, for novel quantum communication and quantum cryptography systems. The presented solution of the problem is to use an ultrafast hot-electron photodetector, based on superconducting thin-film microstructures. This type of device is very promising, due to the macroscopic quantum nature of superconductors. Very fast response time and the small, (meV range) value of the superconducting energy gap characterize the superconductor, leading to the efficient avalanche process even for infrared photons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170)
Notes Approved no
Call Number Serial 1545
Permanent link to this record
 

 
Author Lindgren, M.; Currie, M.; Zeng, W.-S.; Sobolewski, R.; Cherednichenko, S.; Voronov, B.; Gol'tsman, G. N.
Title Picosecond response of a superconducting hot-electron NbN photodetector Type Journal Article
Year 1998 Publication Appl. Supercond. Abbreviated Journal (down) Appl. Supercond.
Volume 6 Issue 7-9 Pages 423-428
Keywords NbN SSPD, SNSPD
Abstract The ps optical response of ultrathin NbN photodetectors has been studied by electro-optic sampling. The detectors were fabricated by patterning ultrathin (3.5 nm thick) NbN films deposited on sapphire by reactive magnetron sputtering into either a 5×10 μm2 microbridge or 25 1 μm wide, 5 μm long strips connected in parallel. Both structures were placed at the center of a 4 mm long coplanar waveguide covered with Ti/Au. The photoresponse was studied at temperatures ranging from 2.15 K to 10 K, with the samples biased in the resistive (switched) state and illuminated with 100 fs wide laser pulses at 395 nm wavelength. At T=2.15 K, we obtained an approximately 100 ps wide transient, which corresponds to a NbN detector response time of 45 ps. The photoresponse can be attributed to the nonequilibrium electron heating effect, where the incident radiation increases the temperature of the electron subsystem, while the phonons act as the heat sink. The high-speed response of NbN devices makes them an excellent choice for an optoelectronic interface for superconducting digital circuits, as well as mixers for the terahertz regime. The multiple-strip detector showed a linear dependence on input optical power and a responsivity =3.9 V/W.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0964-1807 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1584
Permanent link to this record
 

 
Author Il’in, K. S.; Milostnaya, I. I.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.; Sobolewski, R.
Title Ultimate quantum efficiency of a superconducting hot-electron photodetector Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal (down) Appl. Phys. Lett.
Volume 73 Issue 26 Pages 3938-3940
Keywords NbN SSPD, SNSPD
Abstract The quantum efficiency and current and voltage responsivities of fast hot-electron photodetectors, fabricated from superconducting NbN thin films and biased in the resistive state, have been shown to reach values of 340, 220 A/W, and 4×104 V/W,

respectively, for infrared radiation with a wavelength of 0.79 μm. The characteristics of the photodetectors are presented within the general model, based on relaxation processes in the nonequilibrium electron heating of a superconducting thin film. The observed, very high efficiency and sensitivity of the superconductor absorbing the photon are explained by the high multiplication rate of quasiparticles during the avalanche breaking of Cooper pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1579
Permanent link to this record