toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dorenbos, S. N.; Heeres, R.W.; Driessen, E.F.C; Zwiller, V. openurl 
  Title Efficient and robust fiber coupling of superconducting single photon detectors Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal (down) arXiv  
  Volume Issue Pages 6  
  Keywords SSPD  
  Abstract We applied a recently developed fiber coupling technique to superconducting single photon detectors (SSPDs). As the detector area of SSPDs has to be kept as small as possible, coupling to an optical fiber has been either inefficient or unreliable. Etching through the silicon substrate allows fabrication of a circularly shaped chip which self aligns to the core of a ferrule terminated fiber in a fiber sleeve. In situ alignment at cryogenic temperatures is unnecessary and no thermal stress during cooldown, causing misalignment, is induced. We measured the quantum efficiency of these devices with an attenuated tunable broadband source. The combination of a lithographically defined chip and high precision standard telecommunication components yields near unity coupling efficiency and a system detection efficiency of 34% at a wavelength of 1200 nm. This quantum efficiency measurement is confirmed by an absolute efficiency measurement using correlated photon pairs (with $\lambda$ = 1064 nm) produced by spontaneous parametric down-conversion. The efficiency obtained via this method agrees well with the efficiency measured with the attenuated tunable broadband source.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1109.5809 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 689  
Permanent link to this record
 

 
Author Mazin, Benjamin A.; Bumble, Bruce; Meeker, Seth R.; O'Brien, Kieran; McHugh, Sean; Langman, Eric openurl 
  Title A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal (down) arXiv  
  Volume Issue Pages 9  
  Keywords  
  Abstract Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication eprint arXiv:1112.0004 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 698  
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A. openurl 
  Title Waveguide single-photon detectors for integrated quantum photonic circuits Type Conference Article
  Year 2011 Publication arXiv Abbreviated Journal (down) arXiv  
  Volume 1108.5107 Issue Pages 1-11  
  Keywords optical waveguides, waveguide SSPD  
  Abstract The generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 846  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory doi  openurl
  Title Low noise and wide bandwidth of NbN hot-electron bolometer mixers Type Journal Article
  Year 2011 Publication Appl. Phys. Lett. Abbreviated Journal (down) Appl. Phys. Lett.  
  Volume 98 Issue Pages 033507 (1 to 3)  
  Keywords NbN HEB mixer  
  Abstract We report a record double sideband noise temperature of 600 K (5hν/kB) offered by a NbN hot-electron bolometer receiver at 2.5 THz. Allowing for standing wave effects, this value was found to be constant in the intermediate frequency range 1–7 GHz, which indicates that the mixer has an unprecedentedly large noise bandwidth in excess of 7 GHz. The insight into this is provided by gain bandwidth measurements performed at the superconducting transition. They show that the dependence of the bandwidth on the mixer length follows the model for an HEB mixer with diffusion and phonon cooling of the hot electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 638  
Permanent link to this record
 

 
Author Baek, Burm; Lita, Adriana E.; Verma, Varun; Nam, Sae Woo openurl 
  Title Superconducting a-WxSi1–x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm Type Journal Article
  Year 2011 Publication Applied Physics Letters Abbreviated Journal (down) Appl. Phys. Lett.  
  Volume 98 Issue 25 Pages 3  
  Keywords SNSPD  
  Abstract We have developed a single-photon detector based on superconducting amorphous tungsten–silicon alloy (a-WxSi1–x) nanowire. Our device made from a uniform a-WxSi1–x nanowire covers a practical detection area (16 μm×16 μm) and shows high sensitivity featuring a plateau of the internal quantum efficiencies, i.e., efficiencies of generating an electrical pulse per absorbed photon, over a broad wavelength and bias range. This material system for superconducting nanowire detector technology could overcome the limitations of the prevalent nanowire devices based on NbN and lead to more practical, ideal single-photon detectors having high efficiency, low noise, and high count rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 665  
Permanent link to this record
 

 
Author Marsili, Francesco; Najafi, Faraz; Herder, Charles; Berggren, Karl K. openurl 
  Title Electrothermal simulation of superconducting nanowire avalanche photodetectors Type Journal Article
  Year 2011 Publication Applied Physics Letters Abbreviated Journal (down) Appl. Phys. Lett.  
  Volume 98 Issue 9 Pages 3  
  Keywords SNAP  
  Abstract We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 658  
Permanent link to this record
 

 
Author Sprengers, J. P.; Gaggero, A.; Sahin, D.; Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A. openurl 
  Title Waveguide superconducting single-photon detectors for integrated quantum photonic circuits Type Journal Article
  Year 2011 Publication Applied Physics Letters Abbreviated Journal (down) Appl. Phys. Lett.  
  Volume 99 Issue 18 Pages 181110(1-3)  
  Keywords optical waveguides, waveguide SSPD  
  Abstract The monolithic integration of single-photon sources, passive optical circuits, and single-photon detectors enables complex and scalable quantum photonic integrated circuits, for application in linear-optics quantum computing and quantum communications. Here, we demonstrate a key component of such a circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (~0%) at telecom wavelengths, high timing accuracy (~0 ps), and response time in the ns range and are fully compatible with the integration of single-photon sources, passive networks, and modulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 847  
Permanent link to this record
 

 
Author Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing; Reno, John L. openurl 
  Title A 1.8-THz quantum cascade laser operating significantly above the temperature of hw/k Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal (down)  
  Volume 7 Issue Pages 166-171  
  Keywords QCL, 2 mW at 155 K and 1.8 THz  
  Abstract Several competing technologies continue to advance the field of terahertz science; of particular importance has been the development of a terahertz semiconductor quantum cascade laser (QCL), which is arguably the only solid-state terahertz source with average optical power levels of much greater than a milliwatt. Terahertz QCLs are required to be cryogenically cooled and improvement of their temperature performance is the single most important research goal in the field. Thus far, their maximum operating temperature has been empirically limited to ~planckω/kB, a largely inexplicable trend that has bred speculation that a room-temperature terahertz QCL may not be possible in materials used at present. Here, we argue that this behaviour is an indirect consequence of the resonant-tunnelling injection mechanism employed in all previously reported terahertz QCLs. We demonstrate a new scattering-assisted injection scheme to surpass this limit for a 1.8-THz QCL that operates up to ~1.9planckω/kB (163 K). Peak optical power in excess of 2 mW was detected from the laser at 155 K. This development should make QCL technology attractive for applications below 2 THz, and initiate new design strategies for realizing a room-temperature terahertz semiconductor laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 631  
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol’tsman, G. N.; Demsar, J. url  openurl
  Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Miscellaneous
  Year 2011 Publication arXiv Abbreviated Journal (down)  
  Volume Issue Pages  
  Keywords NbN thin film, energy gap dynamics  
  Abstract Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \lambda = 1.1 +/- 0.1, which is in excellent agreement with theoretical estimates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 641 Approved no  
  Call Number Serial 1388  
Permanent link to this record
 

 
Author Edlmayr, V.; Harzer, T. P.; Hoffmann, R.; Kiener, D.; Scheu, C.; Mitterer, C. openurl 
  Title Effects of thermal annealing on the microstructure of sputtered Al2O3 coatings Type Journal Article
  Year 2011 Publication J. Vac. Sci. Technol. A Abbreviated Journal (down)  
  Volume 29 Issue 4 Pages 8  
  Keywords Annealing  
  Abstract The morphology and microstructure of Al2O3 thin films deposited by pulsed direct current magnetron sputtering were studied in the as-grown state and after vacuum annealing at 1000 °C for 12 h using transmission electron microscopy. For the coating deposited under low ion bombardment conditions, the film consists of small γ- and/or δ-Al2O3 grains embedded in an amorphous matrix. The grain size at the region close to the interface to the substrate was much larger than that of the remaining layer. Growth of the γ-Al2O3 phase is promoted during annealing but no transformation to α-Al2O3 was detected. For high-energetic growth conditions, clear evidence for γ-Al2O3 formation was found in the upper part of the coating with grain size much larger than for low-energetic growth, but the film was predominately amorphous at the interface region. Annealing resulted in the transformation of γ-Al2O3 to α-Al2O3, while the mainly amorphous part crystallized to γ-Al2O3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Annealing Approved no  
  Call Number RPLAB @ gujma @ Serial 693  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: