toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing; Reno, John L. openurl 
  Title A 1.8-THz quantum cascade laser operating significantly above the temperature of hw/k Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal  
  Volume 7 Issue Pages 166-171  
  Keywords QCL, 2 mW at 155 K and 1.8 THz  
  Abstract Several competing technologies continue to advance the field of terahertz science; of particular importance has been the development of a terahertz semiconductor quantum cascade laser (QCL), which is arguably the only solid-state terahertz source with average optical power levels of much greater than a milliwatt. Terahertz QCLs are required to be cryogenically cooled and improvement of their temperature performance is the single most important research goal in the field. Thus far, their maximum operating temperature has been empirically limited to ~planckω/kB, a largely inexplicable trend that has bred speculation that a room-temperature terahertz QCL may not be possible in materials used at present. Here, we argue that this behaviour is an indirect consequence of the resonant-tunnelling injection mechanism employed in all previously reported terahertz QCLs. We demonstrate a new scattering-assisted injection scheme to surpass this limit for a 1.8-THz QCL that operates up to ~1.9planckω/kB (163 K). Peak optical power in excess of 2 mW was detected from the laser at 155 K. This development should make QCL technology attractive for applications below 2 THz, and initiate new design strategies for realizing a room-temperature terahertz semiconductor laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 631  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: