|   | 
Details
   web
Records
Author Yang, J. K. W.; Kerman, A. J.; Dauler, E. A.; Anant, V.; Rosfjord, K. M.; Berggren, K. K.
Title Modeling the electrical and thermal response of superconducting nanowire single-photon detectors Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 17 Issue 2 Pages 581 - 585
Keywords SSPD, modeling
Abstract (up) We modeled the response of superconducting nanowire single-photon detectors during a photodetection event, taking into consideration only the thermal and electrical properties of a superconducting NbN nanowire on a sapphire substrate. Our calculations suggest that heating which occurs after the formation of a photo-induced resistive barrier is responsible for the generation of a measurable voltage pulse. We compared this numerical result with experimental data of a voltage pulse from a slow device, i.e. large kinetic inductance, and obtained a good fit. Using this electro-thermal model, we estimated the temperature rise and the resistance buildup in the nanowire, and the return current at which the nanowire becomes superconducting again. We also show that the reset time of these photodetectors can be decreased by the addition of a series resistance and provide supporting experimental data. Finally we present preliminary results on a detector latching behavior that can also be explained using the electro-thermal model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 625
Permanent link to this record
 

 
Author Manova, N. N.; Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A.
Title Developing of NbN films for superconducting microstrip single-photon detector Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012116 (1 to 5)
Keywords NbN SSPD, SNSPD, NbN films
Abstract (up) We optimized NbN films on a Si substrate with a buffer SiO2 layer to produce superconducting microstrip single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current. We varied thickness of films and observed the maximum QE saturation for device based on the thinner film with the lowest ratio RS300/RS20.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1786
Permanent link to this record
 

 
Author Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol’tsman, G.; Bezryadin, A.
Title Dark counts initiated by macroscopic quantum tunneling in NbN superconducting photon detectors Type Miscellaneous
Year 2014 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords NbN SSPD
Abstract (up) We perform measurements of the switching current distributions of three w = 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number murphy2014dark Serial 1356
Permanent link to this record
 

 
Author Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol'tsman, G.; Bezryadin, A.
Title Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts Type Journal Article
Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 5 Issue Pages 10174 (1 to 10)
Keywords SPD, SSPD, SNSPD
Abstract (up) We perform measurements of the switching current distributions of three w approximately 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.
Address Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:25988591; PMCID:PMC4437302 Approved no
Call Number Serial 1344
Permanent link to this record
 

 
Author Korneeva, Y.; Florya, I.; Semenov, A.; Korneev, A.; Goltsman, G.
Title New generation of nanowire NbN superconducting single-photon detector for mid-infrared Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 21 Issue 3 Pages 323-326
Keywords SSPD
Abstract (up) We present a break-through approach to mid-infrared single-photon detection based on nanowire NbN superconducting single-photon detectors (SSPD). Although SSPD became a mature technology for telecom wavelengths (1.3-1.55 μm) its further expansion to mid-infrared wavelength was hampered by low sensitivity above 2 μm. We managed to overcome this limit by reducing the nanowire width to 50 nm, while retaining high superconducting properties and connecting the wires in parallel to produce a voltage response of sufficient magnitude. The new device exhibits 10 times better quantum efficiency at 3.5 μm wavelength than the “standard” SSPD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 644
Permanent link to this record