|
Record |
Links |
|
Author |
Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol'tsman, G.; Bezryadin, A. |
|
|
Title |
Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Sci. Rep. |
Abbreviated Journal |
Sci. Rep. |
|
|
Volume |
5 |
Issue |
|
Pages |
10174 (1 to 10) |
|
|
Keywords |
SPD, SSPD, SNSPD |
|
|
Abstract |
We perform measurements of the switching current distributions of three w approximately 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. |
|
|
Address |
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:25988591; PMCID:PMC4437302 |
Approved |
no |
|
|
Call Number |
|
Serial |
1344 |
|
Permanent link to this record |