toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. url  doi
openurl 
  Title Ultrafast superconducting single-photon detector Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 15 Pages 1670-1680  
  Keywords SSPD, SNSPD  
  Abstract (down) The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 607  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Tarkhov, M. A.; Gol’tsman, G. N. url  openurl
  Title Single-photon detectors for the visible and infrared parts of the spectrum based on NbN nanostructures Type Abstract
  Year 2009 Publication Proc. Progress In Electromagnetics Research Symp. Abbreviated Journal Proc. Progress In Electromagnetics Research Symp.  
  Volume Issue Pages 863-864  
  Keywords SSPD, SNSPD  
  Abstract (down) The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types ofdetectors [1, 2] and their use both in fundamental and applied studies [3–6]. In this paper, wepresent the results of the development and fabrication of receiving systems for the visible andinfrared parts of the spectrum optimised for use in telecommunication systems and quantumcryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Moscow, Russia Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ smirnovsession Serial 1050  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N. url  isbn
openurl 
  Title Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
  Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume Issue Pages 867  
  Keywords HEB  
  Abstract (down) The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.  
  Address Moscow, Russia  
  Corporate Author Thesis  
  Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1559-9450 ISBN 978-1-934142-09-7 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegovultrafast Serial 1022  
Permanent link to this record
 

 
Author Hadfield, Robert H. doi  openurl
  Title Single-photon detectors for optical quantum information applications Type Journal Article
  Year 2009 Publication Nature Photonics Abbreviated Journal Nature Photonics  
  Volume 3 Issue Pages 696-705  
  Keywords SPD  
  Abstract (down) The past decade has seen a dramatic increase in interest in new single-photon detector technologies. A major cause of this trend has undoubtedly been the push towards optical quantum information applications such as quantum key distribution. These new applications place extreme demands on detector performance that go beyond the capabilities of established single-photon detectors. There has been considerable effort to improve conventional photon-counting detectors and to transform new device concepts into workable technologies for optical quantum information applications. This Review aims to highlight the significant recent progress made in improving single-photon detector technologies, and the impact that these developments will have on quantum optics and quantum information science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 678  
Permanent link to this record
 

 
Author Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Allara, David L. Horn, Mark W.; Ashok, S. openurl 
  Title Correlation of temperature response and structure of annealed VOx thin films for IR detector applications Type Journal Article
  Year 2009 Publication J. Vac. Sci. Technol. A Abbreviated Journal  
  Volume 27 Issue 4 Pages 6  
  Keywords Annealing  
  Abstract (down) The effects of thermal annealing on vanadium oxide (VOx) thin films prepared by pulsed-dc magnetron sputtering were studied to explore methods of improving the efficiency of uncooled IR imaging microbolometers, particularly with respect to maximizing the temperature coefficients of resistance (TCR) (typically ~2%) while minimizing resistivity values (typically 0.05–5 Ω cm). Since high TCR values are usually associated with high resistivities, the experiments were designed to find processing conditions that provide an optimal balance in these properties and to then determine the underlying structural correlations which would enable rational design of thin films for this specific application. VOx films of different compositions were deposited by pulsed-dc reactive sputtering from a vanadium target at different oxygen flow rates. The deposited films were further modified by annealing in inert (nitrogen) and oxidizing (oxygen) atmospheres at four different temperatures for 10, 20, or 30 min at a time. The resistivities of the as-deposited films ranged from 0.2 to 13 Ω cm and the TCR values varied from –1.6% to –2.2%. Depending on the exact annealing conditions, several orders of magnitude change in resistance and significant variations in TCR were observed. Optimal results were obtained with annealing in a nitrogen atmosphere. Structural characterization by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and Raman spectroscopy indicated changes in the film crystallinity and phase for annealing conditions over 300 °C with the onset and extent of the changes dependent on which annealing atmosphere was used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Annealing Approved no  
  Call Number RPLAB @ gujma @ Serial 690  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: