toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Allara, David L. Horn, Mark W.; Ashok, S. openurl 
  Title Correlation of temperature response and structure of annealed VOx thin films for IR detector applications Type Journal Article
  Year 2009 Publication J. Vac. Sci. Technol. A Abbreviated Journal  
  Volume 27 Issue 4 Pages 6  
  Keywords Annealing  
  Abstract The effects of thermal annealing on vanadium oxide (VOx) thin films prepared by pulsed-dc magnetron sputtering were studied to explore methods of improving the efficiency of uncooled IR imaging microbolometers, particularly with respect to maximizing the temperature coefficients of resistance (TCR) (typically ~2%) while minimizing resistivity values (typically 0.05–5 Ω cm). Since high TCR values are usually associated with high resistivities, the experiments were designed to find processing conditions that provide an optimal balance in these properties and to then determine the underlying structural correlations which would enable rational design of thin films for this specific application. VOx films of different compositions were deposited by pulsed-dc reactive sputtering from a vanadium target at different oxygen flow rates. The deposited films were further modified by annealing in inert (nitrogen) and oxidizing (oxygen) atmospheres at four different temperatures for 10, 20, or 30 min at a time. The resistivities of the as-deposited films ranged from 0.2 to 13 Ω cm and the TCR values varied from –1.6% to –2.2%. Depending on the exact annealing conditions, several orders of magnitude change in resistance and significant variations in TCR were observed. Optimal results were obtained with annealing in a nitrogen atmosphere. Structural characterization by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and Raman spectroscopy indicated changes in the film crystallinity and phase for annealing conditions over 300 °C with the onset and extent of the changes dependent on which annealing atmosphere was used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Annealing Approved no  
  Call Number RPLAB @ gujma @ Serial 690  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: