toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bandurin, Denis; Svintsov, Dmitry; Gayduchenko, Igor; Xu, Shuigang; Principi, Alessandro; Moskotin, Maksim; Tretyakov, Ivan; Yagodkin, Denis; Zhukov, Sergey; Taniguchi, Takashi; Watanabe, Kenji; Grigorieva, Irina; Polini, Marco; Goltsman, Gregory; Geim, Andre; Fedorov, Georgy url  openurl
  Title Resonant terahertz photoresponse and superlattice plasmons in graphene field-effect transistors Type Abstract
  Year 2019 Publication APS March Meeting Abbreviated Journal APS March Meeting  
  Volume Issue Pages F14.015  
  Keywords  
  Abstract (up) Plasmons, collective oscillations of electron systems, can couple light and electric current, and thus can be used to create compact photodetectors, radiation mixers, and spectrometers. Despite the effort, it has proven challenging to implement plasmonic devices operating at THz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. In this talk, we will demonstrate plasmon-assisted resonant detection of THz radiation by antenna-coupled graphene FETs that act as both rectifying elements and plasmonic Fabry-Perot cavities amplifying the photoresponse. We will show that by varying the plasmon velocity using gate voltage, our detectors can be tuned between multiple resonant modes, a functionality that we apply to measure plasmons' wavelength and lifetime in graphene as well as to probe collective modes in its moire minibands. Our approach offers a convenient tool for further plasmonic research that is often difficult under non-ambient conditions and promises a viable route for various THz applications. We acknowledge Leverhulme Trust, Russian Science Foundation Grants N18-72-00234 and 17-72-30036, Russian Foundation for Basic Research No. 18-57-06001 and 16-29-03402.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1290  
Permanent link to this record
 

 
Author Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; Watanabe, K.; Grigorieva, I. V.; Polini, M.; Goltsman, G. N.; Geim, A. K.; Fedorov, G. doi  openurl
  Title Resonant terahertz detection using graphene plasmons Type Journal Article
  Year 2018 Publication Nat. Commun. Abbreviated Journal Nat. Commun.  
  Volume 9 Issue Pages 5392 (1 to 8)  
  Keywords THz, graphene plasmons  
  Abstract (up) Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.  
  Address Physics Department, Moscow State University of Education (MSPU), Moscow, Russian Federation, 119435. fedorov.ge@mipt.ru  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1148  
Permanent link to this record
 

 
Author Gorokhov, G.; Bychanok, D.; Gayduchenko, I.; Rogov, Y.; Zhukova, E.; Zhukov, S.; Kadyrov, L.; Fedorov, G.; Ivanov, E.; Kotsilkova, R.; Macutkevic, J.; Kuzhir, P. url  doi
openurl 
  Title THz spectroscopy as a versatile tool for filler distribution diagnostics in polymer nanocomposites Type Journal Article
  Year 2020 Publication Polymers (Basel) Abbreviated Journal Polymers (Basel)  
  Volume 12 Issue 12 Pages 3037 (1 to 14)  
  Keywords THz spectroscopy; nanocomposites, percolation threshold, time-domain spectroscopy, time-domain spectrometer, TDS  
  Abstract (up) Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes. The THz peak of permittivity's imaginary part predicted by the applied model was experimentally shown for GNP-containing composites both below and above the percolation threshold. The physical nature of the peak was explained by the impact on filler particles excluded from the percolation network due to the peculiarities of filler distribution. Terahertz spectroscopy as a versatile instrument of filler distribution diagnostics is discussed.  
  Address Institute of Photonics, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4360 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33353036; PMCID:PMC7767186 Approved no  
  Call Number Serial 1780  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Elezov, M.; Sych, D.; Goltsman, G. N. url  doi
openurl 
  Title Optimal fiber optic scheme for sub-SQL quantum receiver realization Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012140  
  Keywords sub-SQL, below quantum limit, QL, system quantum limit, SQL  
  Abstract (up) Practical implementation of high-precision quantum measurements is an important problem in modern science. One of the main parts of the quantum receiver is the optical scheme. We developed and tested several optical circuits based on different types of interferometers, namely Sagnac-based scheme, Mach-Zehnder-based scheme, and Michelson-based scheme. All these schemes are assembled with optical fibers and fiber-optic components, since the fiber-optic implementation is closest to application in practical devices. Schemes were evaluated according to two main criteria: extinction and interference stability. On the basis of the obtained data, it can be concluded that the most suitable is the scheme based on the Mach-Zehnder interferometer. In continuous mode, we were able to obtain an interference extinction about 30 dB with acceptable temporal stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1265  
Permanent link to this record
 

 
Author Sáysz, Wojciech; Guziewicz, Marek; Bar, Jan; Wegrzecki, Maciej; Grabiec, Piotr; Grodecki, Remigiusz; Wegrzecka, Iwona; Zwiller, Val; Milosnaya, Irina; Voronov, Boris; Gol’tsman, Gregory; Kitaygorsky, Jen; Sobolewski, Roman url  openurl
  Title Superconducting NbN nanostructures for single photon quantum detectors Type Abstract
  Year 2008 Publication Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons Abbreviated Journal Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons  
  Volume Issue Pages 160  
  Keywords SSPD, SNSPD  
  Abstract (up) Practical quantum systems such as quantum communication (QC) or quantum measurement systems require detectors with high speed, high sensitivity, high quantum efficiency (QE), and short deadtimes along with precise timing characteristics and low dark counts. Superconducting single photon detectors (SSPDs) based on ultrathin meander type NbN nanostripes (operated at T=2-5K) are a new and highly promising type of devices fulfilling above requirements. In this paper we present results of the SSPDs nanostructure technological optimization. The base for our detector is thin-film (4nm) NbN layer deposited on 350- P m-thick sapphire substrate The active element of the detector is a meander- nanostructure made of 4-nm-thick and 100-nm-wide NbN stripe, covering 10 u 10 P m 2 area with the filling factor ~0,5. The NbN superconducting films were deposited on sapphire substrates by DC reactive magnetron sputtering whereas the meander element of the detector was patterned by the direct electron-beam lithography followed by reactive-ion etching. To enhance the SSPD efficiency at Ȝ = 1.55 P m, we have performed an approach to increase the absorption of the detector by integrating it with optical resonant cavity. An optical microcavity optimized for absorption of 1.55 P m photons was designed as an one-mirror resonator consisting of a Ȝ/4 dielectric layer and a metallic mirror. The microcavity was deposited on the top of the NbN SSPD meander. The resonator was formed by the dielectric SiO 2 layer and metal mirror made of gold or palladium. Microcavity layers were deposited using a magnetron sputtering system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1409  
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Zhang, W.; Svechnikov, S. I.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 688-689  
  Keywords NbN HEB mixers  
  Abstract (up) Presented in this paper are the performances of HEB mixers based on 2-3.5 nm thick NbN films integrated with log-periodic spiral antenna. Double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. Mixer gain bandwidth is 5.2 GHz. Local oscillator power is 1-3 muW for mixers with different active area  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1445  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochij, A.; Rubtsova, I.; Antipov, A.; Ryabchun, S.; Okunev, O.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Kaurova, N.; Seleznev, V.; Korotetskaya, Y.; Gol’tsman, G. url  doi
openurl 
  Title Superconducting single-photon detector for near- and middle IR wavelength range Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 684-685  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) Presented in this paper are the results of research of NbN-film superconducting single-photon detector. At 2 K temperature, quantum efficiency in the visible light (0.56 mum) reaches 30-40 %. With the wavelength increase quantum efficiency decreases and comes to  20% at 1.55 mum and  0.02% at 5.6 mum. Minimum dark counts rate is 2times10-4s-1. The jitter of detector is 35 ps. The detector was successfully implemented for integrated circuits non-invasive optical testing. It is also perspective for quantum cryptography systems  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1447  
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S.; Sianosyan, A.; Teplyakova, K.; Rusova, A.; Goltsman, G. url  doi
openurl 
  Title The prospects of using the radiation for the assessment of corneal and scleral hydration Type Abstract
  Year 2016 Publication Acta Ophthalmol. Abbreviated Journal Acta Ophthalmol.  
  Volume 94 Issue Pages  
  Keywords BWO, avalanche transit‐time diode, medicine, biology  
  Abstract (up) Purpose

An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells – the cornea and the sclera. THz systems creating images in reflected beams are likely to become ideal instruments of noninvasive testing of corneal and scleral hydration degree as THz radiation is highly sensitive to water content. The paper aims at studying the transmittance and reflectance spectra of the cornea and the sclera of rabbit and human eyes, as well as those of the whole rabbit eye, in the frequency range of 0.13–0.32 THz.

Methods

The experiments were carried out on 3 corneas and 3 rabbit scleras, 2 whole rabbit eyes, and 3 human healthy adult scleras using a specially developed THz system based on reliable and easy‐to‐use continuous wave sources: a backward‐wave oscillator and an avalanche transit‐time diode.

Results

The transmittance spectra of the cornea and the sclera and the dependence of the reflection coefficient of these tissues in THz range on water percentage content were determined. Comparison of the rabbit cornea hydrated from 73.2% to 76.3% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration. The decrease of free water concentration by 1% leads to a drop of the reflectance coefficient by 13%. The parameters studied displayed noticeable differences between the sclera and the cornea of rabbits and between rabbit sclera and human sclera.

Conclusions

Preliminary results demonstrate that the proposed technique, based on continuous THz radiation, may be used to create a device for noninvasive testing of corneal and scleral hydration, which has good potential of wide‐scale practical application.

The work was supported by the Russian Foundation of Basic Research (grant No.15‐29‐03843)
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755375X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1333  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A. url  doi
openurl 
  Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
  Year 2021 Publication Optical Engineering Abbreviated Journal Optical Engineering  
  Volume 60 Issue 8 Pages 1-8  
  Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer  
  Abstract (up) Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/1.Oe.60.8.082019 Serial 1260  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Sergeev, A.; Semenov, A. D. doi  openurl
  Title Picosecond response of YBaCuO films to electromagnetic radiation Type Conference Article
  Year 1990 Publication Proc. European Conf. High-Tc Thin Films and Single Crystals Abbreviated Journal Proc. European Conf. High-Tc Thin Films and Single Crystals  
  Volume Issue Pages 457-462  
  Keywords YBCO HTS detectors  
  Abstract (up) Radiation-induced change of the resistance was studied in the resistive state of YBaCuO films. Electron-phonon relaxation time T h was determmed from direct ep measurements and analysis of quasistationary electron heating. Temperature dependence of That TS 40 K was found to – ep be T h.. T'. The resul ts show that ep detectors with the response time of few picosecond at nitrogen temperature can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Gorzkowski, W.; Gutowski, M.; Reich, A.; Szymczak, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference European Conference , Ustroń, Poland , 30 Sept – 4 Oct 1989  
  Notes Approved no  
  Call Number Serial 1695  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: