toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kawano, Yukio; Ishibashi, Koji url  doi
openurl 
  Title An on-chip near-field terahertz probe and detector Type Journal Article
  Year 2008 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 2 Issue 10 Pages 618-621  
  Keywords single molecule, terahertz, THz, near-field, microscopy, imaging, 2DEG, GaAs/AlGaAs, detector, applications  
  Abstract (down) The advantageous properties of terahertz waves, such as their transmission through objects opaque to visible light, are attracting attention for imaging applications. A promising approach for achieving high spatial resolution is the use of near-field imaging. Although this method has been well established in the visible and microwave regions, it is challenging to perform in the terahertz region. In the terahertz techniques investigated to date, detectors have been located remotely from the probe, which degrades sensitivity, and the influence of far-field waves is unavoidable. Here we present a new integrated detection device for terahertz near-field imaging in which all the necessary detection components — an aperture, a probe and a terahertz detector — are integrated on one semiconductor chip, which is cryogenically cooled. This scheme allows highly sensitive, high-resolution detection of the evanescent field alone and promises new capabilities for high-resolution terahertz imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-4885 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 570  
Permanent link to this record
 

 
Author Heeres, R.W.; Dorenbos, S.N.; Koene, B.; Solomon, G.S.; Kouwenhoven, L.P.; Zwiller, V. doi  openurl
  Title On-Chip Single Plasmon Detection Type Journal Article
  Year 2010 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume 10 Issue Pages 661-664  
  Keywords optical antennas; SSPD; Single surface plasmons; superconducting detectors; semiconductor quantum dots; nanophotonics  
  Abstract (down) Surface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides. The plasmons are excited using the single-photon emission of an optically emitting quantum dot. After propagating for several micrometers, the plasmons are coupled to a superconducting detector in the near-field. Correlation measurements prove that single plasmons are being detected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 620  
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R. url  doi
openurl 
  Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7009 Issue Pages 70090V (1 to 8)  
  Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting nanost  
  Abstract (down) Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 μm2 in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 μm and 1.55 μm telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-heliumstorage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be < 1.5 ns and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is < 35 ps and their dark-count rate is below 1s-1. The presented performance parameters show that our single-photon receivers are fully applicable for quantum correlation-type QC systems, including practical quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Sukhoivanov, I.A.; Svich, V.A.; Shmaliy, Y.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1413  
Permanent link to this record
 

 
Author Vystavkin, A. N. url  openurl
  Title Estimation of noise equivalent power and design analysis of an andreev reflection hot-electron microbolometer for submillimeter radioastronomy Type Journal Article
  Year 1999 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords HEB, detector, bolometer  
  Abstract (down) Results of theoretical estimations and measurements of characteristics of an Andreev reflection hot-electron microbolometer for submillimeter radioastronomy made by different researchers are reviewed and analysed. Peculiarities and characteristics of the microbolometers using two types of microthermometer for measurement of the electron temperature increment under influence of the radiation: the SIN-junction and the transition-edge sensor (TES) with electrothermal feedback – are compared. Advantages of the microbolometer with the second type of the microthermometer when the TES is used simultaneously as the absorber of radiation are shown. Methods of achievement of the best noise equivalent power of the microbolometer in such version as well as methods of the matching the microbolometer with the incident radiation flow using planar antennas and with the channel of output signal measurement using a SQUID-picoammeter are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 496  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Sergeev, A.; Semenov, A. D. doi  openurl
  Title Picosecond response of YBaCuO films to electromagnetic radiation Type Conference Article
  Year 1990 Publication Proc. European Conf. High-Tc Thin Films and Single Crystals Abbreviated Journal Proc. European Conf. High-Tc Thin Films and Single Crystals  
  Volume Issue Pages 457-462  
  Keywords YBCO HTS detectors  
  Abstract (down) Radiation-induced change of the resistance was studied in the resistive state of YBaCuO films. Electron-phonon relaxation time T h was determmed from direct ep measurements and analysis of quasistationary electron heating. Temperature dependence of That TS 40 K was found to – ep be T h.. T'. The resul ts show that ep detectors with the response time of few picosecond at nitrogen temperature can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Gorzkowski, W.; Gutowski, M.; Reich, A.; Szymczak, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference European Conference , Ustroń, Poland , 30 Sept – 4 Oct 1989  
  Notes Approved no  
  Call Number Serial 1695  
Permanent link to this record
 

 
Author Mitin, Vladimir; Antipov, Andrei; Sergeev, Andrei; Vagidov, Nizami; Eason, David; Strasser, Gottfried openurl 
  Title Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers Type Journal Article
  Year 2011 Publication Nanoscale Research Letters Abbreviated Journal Nanoscale res lett  
  Volume 6 Issue 1 Pages 6  
  Keywords Quantum dots; Infrared detectors; Photoresponse; Doping; Potential barriers; Capture processes  
  Abstract (down) Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron kinetics, we fabricated several QD structures with different positions of dopants and various levels of doping. The potential barriers as a function of doping and dopant positions have been determined using nextnano3 software. We experimentally investigated the photoresponse to IR radiation as a function of the radiation frequency and voltage bias. We also measured the dark current in these QD structures. Our investigations show that the photoresponse increases ~30 times as the height of potential barriers changes from 30 to 130 meV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 712  
Permanent link to this record
 

 
Author Danerud, M.; Winkler, D.; Zorin, M.; Trifonov, V.; Karasik, B.; Gershenzon, E. M.; Gol'tsman, G. N.; Lindgren, M. url  doi
openurl 
  Title Picosecond detection of infrared radiation with YBa2Cu3O7-δ thin films Type Conference Article
  Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 2104 Issue Pages 183-184  
  Keywords YBCO HTS HEB detectors  
  Abstract (down) Picosecond nonequilibrium and slow bolometric responses from a patterned high-Tc superconducting (HTS) film due toinfrared radiation were investigated using both modulation and pulse techniques. Measurements at A, = 0.85 [tm andA, = 10.6 lim have shown a similar behaviour of the response vs modulation frequency f. The responsivity of the HTS filmbased detector at f ..- 0.6-1 GHz is estimated to be 10-2 – 10-1 V/W.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Birch, J.R.; Parker, T.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves  
  Notes https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=25034664 Approved no  
  Call Number 10.1117/12.2298489 Serial 1653  
Permanent link to this record
 

 
Author Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P. doi  openurl
  Title Fully integrated quantum photonic circuit with an electrically driven light source Type Journal Article
  Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.  
  Volume 10 Issue 11 Pages 727-732  
  Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector  
  Abstract (down) Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1105  
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Lo, W.; Wilsher, K. url  openurl
  Title Infrared picosecond superconducting single-photon detectors for CMOS circuit testing Type Conference Article
  Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages Cmv4  
  Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Electron beam lithography; Infrared detectors; Infrared radiation; Quantum efficiency; Single photon detectors; Superconductors  
  Abstract (down) Novel, NbN superconducting single-photon detectors have been developed for ultrafast, high quantum efficiency detection of single quanta of infrared radiation. Our devices have been successfully implemented in a commercial VLSI CMOS circuit testing system.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference  
  Notes Approved no  
  Call Number Serial 1518  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Li, S. L.; Zhou, K. M.; Shi, S. C.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Measurement of the spectral response of spiral-antenna coupled superconducting hot electron bolometers Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2300804-2300804  
  Keywords NbN HEB detector  
  Abstract (down) Measured spectral response of spiral-antenna coupled superconducting hot electron bolometers (HEBs) often drops dramatically at frequencies that are still within the frequency range of interest (e.g., ~ 5 THz). This is inconsistent with the implied low receiver noise temperatures from the same measurements. To understand this discrepancy, we exhaustively test and calibrate the thermal sources used in Fourier transform spectrometer measurements. We first investigate the absolute emission spectrum of high-pressure Hg arc lamp, then measure the spectral response of two spiral-antenna coupled NbN HEBs with a Martin-Puplett interferometer as spectrometer and 77 K blackbody as broadband signal source. The measured absolute emission spectrum of Hg arc lamp is proportional to frequency, corresponding to an equivalent blackbody temperature of 4000 K at 1 THz, 1500 K at 3 THz, and 800 K at 5 THz, respectively. Measured spectral response of spiral-antenna coupled NbN HEBs, corrected for air absorption, is nearly flat in the frequency range of 0.5-4 THz, consistent with simulated coupling efficiency between HEB and spiral-antenna. These results explain the discrepancy, and prove that spiral-antenna coupled superconducting NbN HEBs work well in a wide frequency range. In addition, this calibration method and these results are broadly applicable to other quasi-optical THz receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1371  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: