toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K. url  doi
openurl 
  Title Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
  Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.  
  Volume 781 Issue Pages 012011 (1 to 5)  
  Keywords WSi, NbN SSPD, SNSPD  
  Abstract (up) Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-899X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1799  
Permanent link to this record
 

 
Author Xu, Y.; Zheng, X.; Williams, C.; Verevkin, A.; Sobolewski, R.; Chulkova, G.; Lipatov, A.; Okunev, O.; Smirnov, K.; Gol’tsman, G. N. url  doi
openurl 
  Title Ultrafast superconducting hot-electron single-photon detector Type Conference Article
  Year 2001 Publication CLEO Abbreviated Journal CLEO  
  Volume Issue Pages 345  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) Summary form only given. The current most-pressing need is to develop a practical, GHz-range counting single-photon detector, operational at either 1.3-/spl mu/m or 1.55-/spl mu/m radiation wavelength, for novel quantum communication and quantum cryptography systems. The presented solution of the problem is to use an ultrafast hot-electron photodetector, based on superconducting thin-film microstructures. This type of device is very promising, due to the macroscopic quantum nature of superconductors. Very fast response time and the small, (meV range) value of the superconducting energy gap characterize the superconductor, leading to the efficient avalanche process even for infrared photons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170)  
  Notes Approved no  
  Call Number Serial 1545  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
  Year 2018 Publication Low Temp. Phys. Abbreviated Journal Low Temp. Phys.  
  Volume 44 Issue 3 Pages 221-225  
  Keywords WSi SSPD, SNSPD  
  Abstract (up) Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-777X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1310  
Permanent link to this record
 

 
Author Tanner, M. G.; Natarajan, C. M.; Pottapenjara, V. K.; O'Connor, J. A.; Warburton, R. J.; Hadfield, R. H.; Baek, B.; Nam, S.; Dorenbos, S. N.; Bermúdez Ureña, E.; Zijlstra, T.; Klapwijk, T. M.; Zwiller, V. openurl 
  Title Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon Type Journal Article
  Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 96 Issue 22 Pages 3  
  Keywords SNSPD  
  Abstract (up) Superconducting nanowire single-photon detectors (SNSPDs) have emerged as a highly promising infrared single-photon detector technology. Next-generation devices are being developed with enhanced detection efficiency (DE) at key technological wavelengths via the use of optical cavities. Furthermore, new materials and substrates are being explored for improved fabrication versatility, higher DE, and lower dark counts. We report on the practical performance of packaged NbTiN SNSPDs fabricated on oxidized silicon substrates in the wavelength range from 830 to 1700 nm. We exploit constructive interference from the SiO2/Si interface in order to achieve enhanced front-side fiber-coupled DE of 23.2 % at 1310 nm, at 1 kHz dark count rate, with 60 ps full width half maximum timing jitter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 655  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Spectral sensitivity of narrow strip NbN superconducting single-photon detector Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 80720G (1 to 9)  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) Superconducting single-photon detector (SSPD) is patterned from 4-nm-thick NbN film deposited on sapphire substrate as a 100-nm-wide strip. Due to its high detection efficiency, low dark counts, and picosecond timing jitter SSPD has become a competitor to the InGaAs avalanche photodiodes at 1550 nm and longer wavelengths. Although the SSPD is operated at liquid helium temperature its efficient single-mode fibre coupling enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. In our strive to increase the detection efficiency at 1550 nm and longer wavelengths we developed and fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm. To increase the voltage response of the device we utilized cascade switching mechanism: we connected 50-nm-wide and 10-μm-long strips in parallel covering the area of 10 μmx10 μm. Absorption of a photon breaks the superconductivity in a strip leading to the bias current redistribution between other strips followed their cascade switching. As the total current of all the strips about is 1 mA by the order of magnitude the response voltage of such an SSPD is several times higher compared to the traditional meander-shaped SSPDs. In middle infrared (about 3 μm wavelength) these devices have the detection efficiency several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Fiurásek, J.; Prochazka, I.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III  
  Notes Approved no  
  Call Number Serial 1387  
Permanent link to this record
 

 
Author Korneev, A. A. url  doi
openurl 
  Title Superconducting NbN microstrip single-photon detectors Type Abstract
  Year 2021 Publication Proc. Quantum Optics and Photon Counting Abbreviated Journal Proc. Quantum Optics and Photon Counting  
  Volume 11771 Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) Superconducting Single-Photon Detectors (SSPD) invented two decades ago have evolved to a mature technology and have become devices of choice in the advanced applications of quantum optics, such as quantum cryptography and optical quantum computing. In these applications SSPDs are coupled to single-mode fibers and feature almost unity detection efficiency, negligible dark counts, picosecond timing jitter and MHz photon count rate. Meanwhile, there are great many applications requiring coupling to multi-mode fibers or free space. ‘Classical’ SSPDs with 100-nm-wide superconducting strip and covering area of about 100 µm2 are not suitable for further scaling due to degradation of performance and low fabrication yield. Recently we have demonstrated single-photon counting in micron-wide superconducting bridges and strips. Here we present our approach to the realization of practical photon-counting detectors of large enough area to be efficiently coupled to multi-mode fibers or free space. The detector is either a meander or a spiral of 1-µm-wide strip covering an area of 50x50 µm2. Being operated at 1.7K temperature it demonstrates the saturated detection efficiency (i.e. limited by the absorption in the detector) up to 1550 nm wavelength, about 10 ns dead time and timing jitter in range 50-100 ps.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Optics and Photon Counting; SPIE Optics + Optoelectronics, 2021, Online Only  
  Notes Approved no  
  Call Number Serial 1784  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title NbN nanowire superconducting single-photon detector for mid-infrared Type Journal Article
  Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia  
  Volume 36 Issue Pages 72-76  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum effciency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum effciency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-3892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1382  
Permanent link to this record
 

 
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J. url  doi
openurl 
  Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue 4 Pages 934-943  
  Keywords SSPD, SNSPD  
  Abstract (up) Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1424  
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R. doi  openurl
  Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
  Year 2005 Publication Quantum Electronics Abbreviated Journal  
  Volume 35 Issue 8 Pages 698-700  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no  
  Call Number Serial 383  
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R. url  doi
openurl 
  Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.  
  Volume 39 Issue 14 Pages 1086-1088  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract (up) The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-5194 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1512  
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue 3 Pages 031106 (1 to 3)  
  Keywords SSPD, SNSPD, APD  
  Abstract (up) The authors report fiber-coupled superconducting single-photon detectors with specifications that exceed those of avalanche photodiodes, operating at telecommunication wavelength, in sensitivity, temporal resolution, and repetition frequency. The improved performance is demonstrated by measuring the intensity correlation function g(2)(τ) of single-photon states at 1300nm produced by single semiconductor quantum dots.

This work was supported by Swiss National Foundation through the “Professeur borsier” and NCCR Quantum Photonics program, FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433), IP “QAP” (Contract No. 15848), NOE “ePIXnet,” and the Italian MIUR-FIRB program.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Erratum: 1395 Approved no  
  Call Number Serial 1396  
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  openurl
  Title Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
  Year 2016 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 1-20  
  Keywords waiveguide SSPD, SNSPD, imaging  
  Abstract (up) The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1334  
Permanent link to this record
 

 
Author Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm; Ilin, Konstantin; Siegel, Michael; Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory url  openurl
  Title Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors Type Abstract
  Year 2013 Publication INIS Abbreviated Journal INIS  
  Volume 46 Issue 8 Pages 1-3  
  Keywords TaN, NbN SSPD, SNSPD  
  Abstract (up) The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1374  
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 51 Issue 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y. url  doi
openurl 
  Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
  Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 13 Issue 2 Pages 024011 (1 to 7)  
  Keywords MoSi SSPD, SNSPD  
  Abstract (up) The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1790  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: