toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol'tsman, G. N.; Elant'iev, A. I.; Karasik, B. S.; Gershenzon, E. M. url  openurl
  Title Antenna – coupled superconducting electron-heating bolometer Type Conference Article
  Year 1993 Publication Proc. 4th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 4th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 623-628  
  Keywords HEB  
  Abstract (down) We propose a novel antenna-coupled superconducting bolometer based on electron-heating in the resistive state. A short narrow ultrathin super- conducting film strip (sized approximately 4x1x0.01 pm 3 ), which is in good thermal contact with the thermostat, serves as a resistive load for infrared or submillimeter current. In contrast to conventional isothermal super- conducting bolometers electron-heating ones can have a higher sensitivity which grows when filni. thickness is reduced. Response time of electron- heating bolometer does not depend on heat transfer from the film to the enviroment. To calculate the sensitivity (NEP), we have used experimental data on wideband Al, Nb and NbN bolometers which have the same un- derlying physical mechanism. The bolom.eters have been made in the form of a structure composed of a number of long narrow strips. The values of for Al, NEP have been found to be 1.5 . 113 -16 1 140 -15 ) and 2 . 10 – 14werT,-1/2 – Nb and NbN respectively. In the paper, the prospects are also discussed of improving the picosecond YBaCuO detector, developed recently. NEP value of the detector, if combined with a microantenna, can reach the order of 10- •ilz-v2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1657  
Permanent link to this record
 

 
Author Elezov, M. S.; Shcherbatenko, M. L.; Sych, D. V.; Goltsman, G. N. url  doi
openurl 
  Title Development of control method for an optimal quantum receiver Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012126  
  Keywords Helstrom bound, SPD, single photon detector, below quantum limit  
  Abstract (down) We propose a method for optimal displacement controlling of an optimal quantum receiver for registrations a binary coherent signal. An optimal receiver is able to distinguish between two phase-modulated states of a coherent signal. The optimal receiver controlling method can be used later in practice in various physical implementations of the optimal receiver.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1264  
Permanent link to this record
 

 
Author Gol’tsman, G.; Korneev, A.; Tarkhov, M.; Seleznev, V.; Divochiy, A.; Minaeva, O.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K. url  doi
openurl 
  Title Middle-infrared ultrafast superconducting single photon detector Type Conference Article
  Year 2007 Publication 32nd IRMW / 15th ICTE Abbreviated Journal 32nd IRMW / 15th ICTE  
  Volume Issue Pages 115-116  
  Keywords SSPD, SNSPD  
  Abstract (down) We present the results of the research on quantum efficiency of the ultrathin-film superconducting single-photon detectors (SSPD) in the wavelength rage from 1 mum to 5.7 mum. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of ~1 % at 5.7 mum wavelength with the SSPD made from 4-nm-thick NbN film. In a pursuit of further performance improvement we endeavored SSPD fabricating from 4-nm-thick MoRe film as an alternative material. The MoRe film exhibited transition temperature of 7.7K, critical current density at 4.2 K temperature was 1.1times10 6 A/cm 2 , and diffusivity 1.73 cmVs. The single-photon response was observed with MoRe SSPD at 1.3 mum wavelength with quantum efficiency estimated to be 0.04%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1246  
Permanent link to this record
 

 
Author Gol'tsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Słysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, Roman url  openurl
  Title Superconducting nanostructured detectors capable of single-photon counting in the THz range Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 555-557  
  Keywords NbN SSPD, SNSPD  
  Abstract (down) We present the results of the NbN superconducting single-photon detector sensitivity measurement in the visible to mid-IR range. For visible and near IR light (0.56 — 1.3μm wavelengths) the detector exhibits 30% quantum efficiency saturation value limited by the NbN film absorption and extremely low level of dark counts (2x10 -4 s -1). The detector manifested single-photon counting up to 6 μm wavelength with the quantum efficiency reaching 10 -2 % at 5.6 μm and 3 K temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1476  
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G. url  doi
openurl 
  Title Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
  Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz  
  Volume Issue Pages 1-2  
  Keywords NbN HEB mixer, superlattice  
  Abstract (down) We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 6105209 Serial 1384  
Permanent link to this record
 

 
Author Gol'tsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Smirnov, Konstantin V.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. doi  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5727 Issue Pages 95-106  
  Keywords NbN HEB mixers  
  Abstract (down) We present the results of our studies of NbN phonon-cooled HEB mixers at terahertz frequencies. The mixers were fabricated from NbN film deposited on a high-resistivity Si substrate with an MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 x 0.2 μm2 active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. The largest gain bandwidth of 5.2 GHz was achieved for a mixer based on 2 nm thick NbN film deposited on MgO layer over Si substrate. The gain bandwidth of the mixer based on 3.5 nm NbN film deposited on Si with MgO is 4.2 GHz and the noise bandwidth for the same device amounts to 5 GHz. We also present the results of our research into decrease of the direct detection contribution to the measured Y-factor and a possible error of noise temperature calculation. The use of a square nickel cell mesh as an IR-filter enabled us to avoid the effect of direct detection and measure apparent value of the noise temperature which was 16% less than that obtained using conventional black polyethylene IR-filter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Electronics and Photonics IV  
  Notes Approved no  
  Call Number Serial 378  
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title Noise temperature measurements of NbN phonon-cooled hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 236-241  
  Keywords HEB mixer, NbN, direct detection effect  
  Abstract (down) We present the results of noise temperature measurements of NbN phonon-cooled HEB mixers based on a 3.5 nm NbN film deposited on a high-resistivity Si substrate with a 200 nm – thick MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 µm x 0.2 µm active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. We also present the results of direct detection contribution to the measured Y-factor and of a possible error of noise temperature calculation. This error was more than 8% for the mixer with in-plane dimensions of 2.4 x 0.16 µm 2 at the optimal noise temperature point. The use of a mesh filter enabled us to avoid the effect of direct detection and decrease optical losses by 0.5 dB. The paper is concluded by the investigation results of the mixer polarization response. It was shown that the polarization can differ from the circular one at 3.8 THz by more than 2 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Northampton, Massachusetts, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 344  
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Morozov, P.; Seleznev, V.; Smirnov, K url  openurl
  Title Development of fast and high-effective single-photon detector for spectrum range up to 2.3 μm Type Conference Article
  Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN  
  Volume Issue Pages 439-440  
  Keywords SSPD, SNSPD  
  Abstract (down) We present the results of development and testing of the single-photon-counting system operating in the wide spectrum rane up to 2.3 mcm. We managed to increase system detection efficiency up to 60% in the range of 1.7-2.3 mcm optimisation of the fabrication methods of superconducting single-photon detectors and application of the single-mode fiber with enlarged core diameter.  
  Address St. Petersburg, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1255  
Permanent link to this record
 

 
Author Romanov, N. R.; Zolotov, P. I.; Smirnov, K. V. url  isbn
openurl 
  Title Development of disordered ultra-thin superconducting vanadium nitride films Type Conference Article
  Year 2019 Publication Proc. 8th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 8th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 425-426  
  Keywords VN films  
  Abstract (down) We present the results of development and research of superconducting vanadium nitride VN films ~10 nm thick having different level of disorder. It is showed that both silicon substrate temperature T sub in process of magnetron sputtering and total gas pressure P affect superconducting transition temperature of sputtered films and R 300 /R 20 ratio defining their level of disorder. VN films suitable for development of superconducting single-photon detectors on their basis are obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2536-4 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2018/12/FIO2019-Sbornik.pdf Approved no  
  Call Number Serial 1802  
Permanent link to this record
 

 
Author Seliverstov, Sergey V.; Rusova, Anastasia A.; Kaurova, Natalya S.; Voronov, Boris M.; Goltsman, Gregory N. openurl 
  Title AC-biased superconducting NbN hot-electron bolometer for frequency-domain multiplexing Type Conference Article
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 120-122  
  Keywords NbN HEB mixer  
  Abstract (down) We present the results of characterization of fast and sensitive superconducting antenna-coupled THz direct detector based on NbN hot-electron bolometer (HEB) with AC-bias. We discuss the possibility of implementation of the AC-bias for design the readout system from the multi-element arrays of HEBs using standard technique of frequency-domain multiplexing. We demonstrate experimentally that this approach does not lead to significant deterioration of the HEB sensitivity compared with the value obtained for the same detector with DC- bias. Results of a numerical calculations of the HEB responsivity at AC-bias are in a good agreement with the experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1174  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: