|   | 
Details
   web
Records
Author (up) Gol'tsman, G. N.; Karasik, B. S.; Svechnikov, S. I.; Gershenzon, E. M.; Ekström, H.; Kollberg E.
Title Noise temperature of NbN hot—electron quasioptical superconducting mixer in 200-700 GHz range Type Abstract
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 268
Keywords NbN HEB mixers, noise temperature
Abstract The electron heating effect in superconducting films is becoming very attractive for the development of THz range mixers because of the absence of frequency limitations inherent in the bolometric mechanism. However, the evidence for the spectral dependence of the position of optimal operating point has been found recently for NbN thin film devices 1.2 • The effect is presumably attributed to the variation in the absorption of radiation depending on the frequency. Since the resistive state is not spatially uniform the coupling efficiency of the mixer device with radiation can be different for frequencies larger than Zeilh and those smaller than 2Alh (d is the effective superconducting gap in the resistive state). To study the effect more thoroughly we have investigated the noise temperature of quasioptical NbN mixer device with broken hue tapered slot antenna in the frequency range 200-700 GHz. The device consists of several (5-10) parallel strips 1 jim wide and 6-7 tun thick made from NbN film on Si0 2 -Si 3 N 4 -Si membrane. The strips are connected with the gold contacts of the slot-line antenna which serves both as bias and IF leads. We used backward wave oscillators as LO sources and a standard hot/cold load technique for noise temperature measurements. The frequency dependence of noise temperature is mainly determined by two factors: frequency properties of the antenna and frequency dependence of the NbN film impedance. To separate both factors we monitored the frequency dependence of the device responsivity in the detector mode at a higher temperature within the superconducting transition where the impedance of NbN film is close to its normal resistance. In this case the impedance of the device itself is frequency independent. The experimental results will be reported at the Symposium. 1. G. Gollsman, S. Jacobsson, H. EkstrOm, B. Karasik, E. Kollberg, and E. Gershenzon, “Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation,” Proc of the 5th Int. Symp. on Space Terahertz Technology, pp. 209-213a, May 10-12,1994. 2. B.S. Karasik, G.N. Gol i tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekstrom, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer,” presented at the ASC94, submitted to IEEE Trans. on Appl. Superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1627
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.; Korneev, A.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Minaeva, O.; Smirnov, K.; Voronov, B.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2005 Publication Phys. Stat. Sol. (C) Abbreviated Journal Phys. Stat. Sol. (C)
Volume 2 Issue 5 Pages 1480-1488
Keywords NbN SSPD, SNSPD
Abstract We present our progress on the research and development of NbN superconducting single‐photon detectors (SSPD's) for ultrafast counting of near‐infrared photons for secure quantum communications. Our SSPD's operate in the quantum detection mode based on the photon‐induced hotspot formation and subsequent development of a transient resistive barrier across an ultrathin and submicron‐width superconducting stripe. The devices are fabricated from 4‐nm‐thick NbN films and kept in the 4.2‐ to 2‐K temperature range. The detector experimental quantum efficiency in the photon‐counting mode reaches above 40% for the visible light and up to 30% in the 1.3‐ to 1.55‐µm wavelength range with dark counts below 0.01 per second. The experimental real‐time counting rate is above 2 GHz and is limited by our readout electronics. The SSPD's timing jitter is below 18 ps, and the best‐measured value of the noise‐equivalent power (NEP) is 5 × 10–21 W/Hz1/2 at 1.3 µm. In terms of quantum efficiency, timing jitter, and maximum counting rate, our NbN SSPD's significantly outperform semiconductor avalanche photodiodes and photomultipliers in the 1.3‐ to 1.55‐µm range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1610-1634 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1479
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.; Kouminov, P.; Goghidze, I.; Gershenzon, E. M.
Title Nonequilibrium kinetic inductive response of YBaCuO thin films to low-power laser pulses Type Journal Article
Year 1994 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 235-240 Issue Pages 1979-1980
Keywords YBCO HTS KID
Abstract Transient non-equilibrium kinetic inductive voltage response of YBaCuO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 μm and 1.5 μm wavelength has been revealed. By increasing the sensitivity of 100 ps resolution time registration system and diminishing light intensity (fluence 0.1-1 μJ2/cm2) and transport current (density j≤105 A/cm2) we observed a perculiar bipolar signal form with nearly equal amplitudes of each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively of the same form as the response in the resistive and normal states: nonequilibrium picosecond scale component followed by bolometric nanosecond. Nonequilibrium response is interpreted as suppression of order parameter by excess of quasiparticles followed by a change in resistance in the resistive state and kinetic inductance in superconductive state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1634
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.; Loudkov, D. N.
Title Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy Type Journal Article
Year 2003 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume 46 Issue 8/9 Pages 604-617
Keywords NbN HEB mixers
Abstract We review the latest developments, research, and radioastronomy applications of hot-electron bolometer (HEB) mixers operated in the terahertz waveband. The physical principles of operation of terahertz HEB mixers are presented, their manufacturing from ultrathin NbN films, the main HEB-mixer parameters and their measurement techniques are discussed, and practical terahertz radioastronomy projects based on heterodyne receivers with HEB mixers are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes UDC 537.312.62 Approved no
Call Number Serial 472
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Korneev, A.; Minaeva, O.; Antipov, A.; Divochiy, A.; Kaurova, N.; Voronov, B.; Pan, D.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Sobolewski, R.
Title Middle-infrared to visible-light ultrafast superconducting single-photon detector Type Conference Article
Year 2006 Publication Proc. ASC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Seattle Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ SSPD_cavity_ASC Serial 389
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Jacobsson, S.; Ekstrom, H.; Karasik, B.; Kollberg, E.; Gershenzon, E.
Title Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation Type Conference Article
Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 209-213a
Keywords NbN HEB mixers
Abstract NbN hot-electron mixers combined with slot-line tapered antennas on Si wdnitride membranes had been fabricated. Several strips of 1 gm wide and 5 tan long made from 100 A NbN film are inserted into the slot antenna. IV-curves under local oscillator power in 300-350 GHz frequency range and conversion gain dependencies on intermediate fre- quency in the 0.1-1 GHz range are measured and compared with that for 100 GHz frequency band. Our results show that pumped IV-curves and intermediate frequency bands are different for 100 GHz and 300 GHz frequency ranges. The interpretation exploits the fact that for the lowest radiation frequency the superconducting energy gap is larger than the radiation quantum energy while they are comparable at the higher frequency. Tha results show that such mixers have good perspectives for terahertz receiving technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1643
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Słysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, Roman
Title Superconducting nanostructured detectors capable of single-photon counting in the THz range Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 555-557
Keywords NbN SSPD, SNSPD
Abstract We present the results of the NbN superconducting single-photon detector sensitivity measurement in the visible to mid-IR range. For visible and near IR light (0.56 — 1.3μm wavelengths) the detector exhibits 30% quantum efficiency saturation value limited by the NbN film absorption and extremely low level of dark counts (2x10 -4 s -1). The detector manifested single-photon counting up to 6 μm wavelength with the quantum efficiency reaching 10 -2 % at 5.6 μm and 3 K temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1476
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Kouminov, P.; Goghidze, I.; Gershenzon, E.
Title Nonequilibrium kinetic inductive response of YBCO thin films to low power laser pulses Type Journal Article
Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 5 Issue 2 Pages 2591-2594
Keywords YBCO HTS KID
Abstract We have discovered a transient nonequilibrium kinetic inductive voltage response of YBCO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 /spl mu/m and 1.54 /spl mu/m wavelength. By increasing the sensitivity of the read-out system with 100 ps resolution time and diminishing the light intensity (fluence 0.1-2 /spl mu/J/cm/sup 2/) and transport current (density /spl les/10/sup 5/ A/cm/sup 2/) we were able to observe a peculiar bipolar signal form with nearly equal amplitudes for each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively, of the same form as the response in the resistive and normal states: the nonequilibrium picosecond scale component is followed by the bolometric nanosecond component. The nonequilibrium response is interpreted as suppression of the order parameter by excess quasiparticles followed by a change both in resistance (for the resistive state) and in kinetic inductance (for the superconducting state).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1621
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Maslennikov, S.; Finkel, M.; Antipov, S.; Kaurova, N.; Grishina, E.; Polyakov, S.; Vachtomin, Y.; Svechnikov, S.; Smirnov, K.; Voronov, B.
Title Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer Type Conference Article
Year 2006 Publication Proc. MRS Abbreviated Journal Proc. MRS
Volume 935 Issue Pages 210 (1 to 6)
Keywords NbN HEB mixers
Abstract Planar spiral antenna coupled and directly lens coupled NbN HEB mixer structures are studied. An additional MgO buffer layer between the superconducting film and Si substrate is introduced. The buffer layer enables us to increase the gain bandwidth of a HEB mixer due to better acoustic transparency. The gain bandwidth is widened as NbN film thickness decreases and amounts to 5.2 GHz. The noise temperature of antenna coupled mixer is 1300 and 3100 K at 2.5 and 3.8 THz respectively. The structure and composition of NbN films is investigated by X-ray diffraction spectroscopy methods. Noise performance degradation at LO frequencies more than 3 THz is due to the use of a planar antenna and signal loss in contacts between the antenna and the sensitive NbN bridge. The mixer is reconfigured for operation at higher frequencies in a manner that receiver’s noise temperature is only 2300 K (3 times of quantum limit) at LO frequency of 30 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1440
Permanent link to this record
 

 
Author (up) Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R.
Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 246-251
Keywords SSPD, SNSPD
Abstract We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 431
Permanent link to this record
 

 
Author (up) Gousev, Y. P.; Gol'tsman, G. N.; Karasik, B. S.; Gershenzon, E. M.; Semenov, A. D.; Barowski, H. S.; Nebosis, R. S.; Renk, K. F.
Title Quasioptical superconducting hot electron bolometer for submillmeter waves Type Journal Article
Year 1996 Publication Int. J. of Infrared and Millimeter Waves Abbreviated Journal Int. J. of Infrared and Millimeter Waves
Volume 17 Issue 2 Pages 317-331
Keywords NbN HEB
Abstract We report on a superconducting hot electron bolometer coupled to radiation via a broadband antenna. The bolometer, a structured NbN film, was patterned on a thin dielectric membrane between terminals of a gold slotline antenna. We investigated the response to submillimeter radiation (wave-lengths ∼ 0.1 mm to 0.7 mm) in the fundamental Gaussian mode. We found that the directivity of the antenna was constant within a factor of 2.5 through the whole experimental range. The noise equivalent power of the bolometer at 119 µm was ∼ 3 · 10−13 W/Hz1/2; a time constant of ∼ 160 ps was estimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0195-9271 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1618
Permanent link to this record
 

 
Author (up) Gousev, Y. P.; Semenov, A. D.; Goghidze, I. G.; Pechen, E. V.; Varlashkin, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Renk, K. F.
Title Current dependent noise in a YBa2Cu3O7-δ hot-electron bolometer Type Journal Article
Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages 3556-3559
Keywords YBCO HTS HEB mixers
Abstract We investigated the output noise of a YBa2Cu3O7-δ (YBCO) superconducting hot-electron bolometer (HEB) in a large frequency range (10 kHz to 8 GHz); the bolometer either consisted of a structured 50 nm thick YBCO film on LaAlO/sub 3/ or a 30 nm thick film on a MgO substrate. We found that flicker noise dominated at low frequencies (below 1 MHz), while at higher frequencies Johnson noise and a current dependent noise were the main noise sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1592
Permanent link to this record
 

 
Author (up) Gousev, Y. P.; Semenov, A. D.; Gol'tsman, G. N.; Sergeev, A. V.; Gershenzon, E. M.
Title Electron-phonon interaction in disordered NbN films Type Journal Article
Year 1994 Publication Phys. B Condens. Mat. Abbreviated Journal Phys. B Condens. Mat.
Volume 194-196 Issue Pages 1355-1356
Keywords NbN films
Abstract Electron-phonon interaction time has been investigated in disordered films of NbN. A temperatures below 5.5 K tau_eph ~ T -1"6 which is attributed to the renormalisation of phonon spectrum in thin films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1649
Permanent link to this record
 

 
Author (up) Gousev, Yu. P.; Gol'tsman, G. N.; Semenov, A. D.; Gershenzon, E. M.; Nebosis, R. S.; Heusinger, M. A.; Renk, K. F.
Title Broadband ultrafast superconducting NbN detector for electromagnetic radiation Type Journal Article
Year 1994 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 75 Issue 7 Pages 3695-3697
Keywords NbN HEB
Abstract An ultrafast detector that is sensitive to radiation in a broad spectral range from submillimeter waves to visible light is reported. It consists of a structured NbN thin film cooled to a temperature below Tc (∼11 K). Using 20 ps pulses of a GaAs laser, we observed signal pulses with both rise and decay time of about 50 ps. From the analysis of a mixing experiment with submillimeter radiation we estimate an intrinsic response time of the detector of ∼12 ps. The sensitivity was found to be similar for the near‐infrared and submillimeter radiation. Broadband sensitivity and short response time are attributed to a quasiparticle heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 252
Permanent link to this record
 

 
Author (up) Gousev, Yu. P.; Olsson, H. K.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 121-129
Keywords NbN HEB mixers
Abstract We report on noise temperature measurements for a NbN phonon-cooled hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz. Radiation was coupled to the mixer, placed in a vacuum chamber of He cryostat, by means of a planar spiral antenna and a Si immersion lens. A backward-wave oscillator, tunable throughout the spectral range, delivered an output power of few 1.1W that was enough for optimum operation of the mixer. At 4.2 K ambient temperature and 1.025 THz radiation frequency, we obtained a receiver noise temperature of 1550 K despite of using a relatively noisy room-temperature amplifier at the intermediate frequency port. The noise temperature was fairly constant throughout the entire operation range and for intermediate frequencies from 1 GHz to 2 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1588
Permanent link to this record
 

 
Author (up) Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G.
Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 495-498
Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model
Abstract Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 980
Permanent link to this record
 

 
Author (up) Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages S224-S228
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 558
Permanent link to this record
 

 
Author (up) Hajenius, M.; Yang, Z. Q.; Gao, J. R.; Baselmans, J. J. A.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.
Title Optimized sensitivity of NbN hot electron bolometer mixers by annealing Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 399-402
Keywords NbN HEB mixers
Abstract We report that the heterodyne sensitivity of superconducting hot-electron bolometers (HEBs) increases by 25-30% after annealing at 85degC in high vacuum. The devices studied are twin-slot antenna coupled mixers with a small area NbN bridge of 1 mum times 0.15 mum, above which there is a SiO 2 passivation layer. The mixer noise temperature, gain, and resistance versus temperature curve of a HEB before and after annealing are compared and analysed. We show that the annealing reduces the intrinsic noise of the mixer by 37% and makes the superconducting transition of the bridge and the contacts sharper. We argue that the reduction ofthe noise is mainly due to the improvement of the transparency of the contact/film interface. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and at a bath temperature of 4.2 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1426
Permanent link to this record
 

 
Author (up) Hübers, H.-W.; Semenov, A. D.; Richter, H.; Schubert, J.; Hadjiloucas, S.; Bowen, J. W.; Gol'tsman, G.; Voronov, B. M.; Gershenzon, E. M.
Title Antenna pattern of the quasi-optical hot-electron bolometric mixer at terahertz frequencies Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 286-296
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 323
Permanent link to this record
 

 
Author (up) Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop
Volume Issue Pages
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address Monterey, CA, USA
Corporate Author Thesis
Publisher Place of Publication Editor Wold, J.; Davidson, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no
Call Number Serial 1829
Permanent link to this record
 

 
Author (up) Hübers, Heinz-Wilhelm; Semenov, A.; Richter, H.; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Phonon cooled far-infrared hot electron bolometer mixer Type Abstract
Year 2002 Publication NASA/ADS Abbreviated Journal NASA/ADS
Volume Issue Pages
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy need quantum-limited sensitivity. At frequencies above 1.4 THz superconducting hot electron bolometers (HEB) can be used to achieve this goal. We present results of the development of a quasi-optical phonon-cooled NbN HEB mixer for GREAT, the German heterodyne receiver for SOFIA. Different mixers with logarithmic spiral and double slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern at several frequencies between 0.7 THz and 5.2 THz. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 16 dB. The response of the mixer was linear up to 400 K load temperature. This performance was verified by measuring an emission line of methanol at 2.5 THz. The results demonstrate that the NbN HEB is very well suited as a mixer for FIR heterodyne receivers.
Address Monterey, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, 1-3 April 2002
Notes id.37 Approved no
Call Number Serial 1534
Permanent link to this record
 

 
Author (up) Il'in, K. S.; Cherednichenko, S. I.; Gol'tsman, G. N.; Currie, M.; Sobolewski, R.
Title Comparative study of the bandwidth of phonon-cooled NbN hot-electron bolometers in submillimeter and optical wavelength ranges Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 323-330
Keywords NbN HEB mixers
Abstract We report the results of the bandwidth measurements of NbN hot-electron bolometers, perfomied in the terahertz frequency domain at 140 GHz and 660 GHz and in time domain in the optical range at the wavelength of 395 nm.. Our studies were done on 3.5-nm-thick NbN films evaporated on sapphire substrates and patterned into ilin-size microbridges. In order to measure the gain bandwidth, we used two identical BWOs (140 or 660 GHz), one functioning as a local oscillator and the other as a signal source. The bandwidth we achieved was 3.5-4 GHz at 4.2 K with the optimal LO and DC biases. Time-domain measurements with a resolution below 300 fs were performed using an electro-optic sampling system, in the temperature range between 4.2 K to 9 K at various values of the bias current and optical power. The obtained response time of the NbN hot-electron bolometer to —100- fs-wide Ti:sapphire laser pulses was about 27 ps, what corresponds to the 5.9 GHz gain bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1590
Permanent link to this record
 

 
Author (up) Il'in, K. S.; Currie, M.; Lindgren, M.; Milostnaya, I. I.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R.
Title Quantum efficiency and time-domain response of superconducting NbN hot-electron photodetectors Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 3338-3341
Keywords NbN SSPD, SNSPD
Abstract We report our studies on the response of ultrathin superconducting NbN hot-electron photodetectors. We have measured the photoresponse of few-nm-thick, micron-size structures, which consisted of single and multiple microbridges, to radiation from the continuous-wave semiconductor laser and the femtosecond Ti:sapphire laser with the wavelength of 790 nm and 400 nm, respectively. The maximum responsivity was observed near the film's superconducting transition with the device optimally current-biased in the resistive state. The responsivity of the detector, normalized to its illuminated area and the coupling factor, was 220 A/W(3/spl times/10/sup 4/ V/W), which corresponded to a quantum efficiency of 340. The responsivity was wavelength independent from the far infrared to the ultraviolet range, and was at least two orders of magnitude higher than comparable semiconductor optical detectors. The time constant of the photoresponse signal was 45 ps, when was measured at 2.15 K in the resistive (switched) state using a cryogenic electro-optical sampling technique with subpicosecond resolution. The obtained results agree very well with our calculations performed using a two-temperature model of the electron heating in thin superconducting films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1566
Permanent link to this record
 

 
Author (up) Il'in, K. S.; Gol'tsman, G. N.; Voronov, B. M.; Sobolewski, Roman
Title Characterization of the electron energy relaxation process in NbN hot-electron devices Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 390-397
Keywords HEB mixers, SSPD, SNSPD, NbN films, Nb films
Abstract We report on transient measurements of electron energy relaxation in NbN films with 300-fs time resolution. Using an electro-optic sampling technique, we have studied the photoresponse of 3.5-nm-thick NbN films deposited on sapphire substrates and exposed to 100-fs-wide optical pulses. Our experimental data analysis was based on the two-temperature model and has shown that in our films at the superconducting transition 10.5 K the inelastic electron-phonon scattering time was about (111}+-__.2) ps. This response time indicated that the maximum intermediate-frequency band of a NbN hot-electron phonon-cooled mixer should reach (16+41-3) GHz if one eliminates the bolometric phonon-heating effect. We have suggested several ways to increase the effectiveness of phonon cooling to achieve the above intrinsic value of the NbN mixer bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1576
Permanent link to this record
 

 
Author (up) Il'in, K. S.; Karasik, B. S.; Ptitsina, N. G.; Sergeev, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen, E. V.; Krasnosvobodtsev, S. I.
Title Electron-phonon-impurity interference in thin NbC films: electron inelastic scattering time and corrections to resistivity Type Conference Article
Year 1996 Publication Czech. J. Phys. Abbreviated Journal Czech. J. Phys.
Volume 46 Issue S2 Pages 857-858
Keywords NbC films
Abstract Complex study of transport properties of impure NbC films with the electron mean free pathl=0.6–13 nm show the crucial role of the electron-phonon-impurity interference (EPII). In the temperature range 20–70 K we found the interference correction to resistivity proportional to T2 and to the residual resistivity of the film. Using the comprehensive theory of EPII, we determine the electron coupling with transverse phonons and calculate the electron inelastic scattering time. Direct measurements of the inelastic electron scattering time using a response to a high-frequency amplitude modulated cw radiation agree well with the theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-4626 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1617
Permanent link to this record
 

 
Author (up) Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M.
Title Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type Journal Article
Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 76 Issue 19 Pages 2752-2754
Keywords NbN HEB detectors, two-temperature model, IF bandwidth
Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 856
Permanent link to this record
 

 
Author (up) Il'in, K. S.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R.
Title Infrared hot-electron NbN superconducting photodetectors for imaging applications Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 755-758
Keywords NbN SSPD, SNSPD
Abstract We report an effective quantum efficiency of 340, responsivity >200 A W-1 (>104 V W-1) and response time of 27±5 ps at temperatures close to the superconducting transition for NbN superconducting hot-electron photodetectors (HEPs) in the near-infrared and optical ranges. Our studies were performed on a few nm thick NbN films deposited on sapphire substrates and patterned into µm-size multibridge detector structures, incorporated into a coplanar transmission line. The time-resolved photoresponse was studied by means of subpicosecond electro-optic sampling with 100 fs wide laser pulses. The quantum efficiency and responsivity studies of our photodetectors were conducted using an amplitude-modulated infrared beam, fibre-optically coupled to the device. The observed picosecond response time and the very high efficiency and sensitivity of the NbN HEPs make them an excellent choice for infrared imaging photodetectors and input optical-to-electrical transducers for superconducting digital circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1562
Permanent link to this record
 

 
Author (up) Il'in, K.; Siegel, M.; Semenov, A.; Engel, A.; Hübers, H.-W.; Hollmann, E.; Gol'tsman, G.; Voronov, B.
Title Thickness dependence of superconducting properties of ultrathin Nb and NbN films Type Conference Article
Year 2004 Publication AKF-Frühjahrstagung Abbreviated Journal
Volume Issue Pages
Keywords Nb, NbN films, has potential plagiarism
Abstract
Address Berlin-Adlershof
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1503
Permanent link to this record
 

 
Author (up) Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B.
Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 395-398
Keywords NbN HEB mixers, noise temperature
Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1429
Permanent link to this record
 

 
Author (up) Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume 1 Issue 5 Pages 587-590
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.
Address Hangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-7360 ISBN Medium
Area Expedition Conference Progress In Electromagnetics Research Symposium
Notes Approved no
Call Number Serial 1482
Permanent link to this record
 

 
Author (up) Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.
Volume 54 Issue 7 Pages 2944-2948
Keywords NbN HEB mixers
Abstract In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1448
Permanent link to this record
 

 
Author (up) Jukna, A.; Kitaygorsky, J.; Pan, D.; Cross, A.; Perlman, A.; Komissarov, I.; Sobolewski, R.; Okunev, O.; Smirnov, K.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Voronov, B.; Gol'tsman, G.
Title Dynamics of hotspot formation in nanostructured superconducting stripes excited with single photons Type Journal Article
Year 2008 Publication Acta Physica Polonica A Abbreviated Journal Acta Physica Polonica A
Volume 113 Issue 3 Pages 955-958
Keywords SSPD, SNSPD
Abstract Dynamics of a resistive hotspot formation by near-infrared-wavelength single photons in nanowire-type superconducting NbN stripes was investigated. Numerical simulations of ultrafast thermalization of photon-excited nonequilibrium quasiparticles, their multiplication and out-diffusion from a site of the photon absorption demonstrate that 1.55 μm wavelength photons create in an ultrathin, two-dimensional superconducting film a resistive hotspot with the diameter which depends on the photon energy, and the nanowire temperature and biasing conditions. Our hotspot model indicates that under the subcritical current bias of the 2D stripe, the electric field penetrates the superconductor at the hotspot boundary, leading to suppression of the stripe superconducting properties and accelerated development of a voltage transient across the stripe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1414
Permanent link to this record
 

 
Author (up) Karasik, B. S.; Gol'tsman, G. N.; Voronov, B. M.; Svechnikov, S. I.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Yngvesson, K. S.
Title Hot electron quasioptical NbN superconducting mixer Type Journal Article
Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 5 Issue 2 Pages 2232-2235
Keywords NbN HEB mixers
Abstract Hot electron superconductor mixer devices made of thin NbN films on SiO/sub 2/-Si/sub 3/N/sub 4/-Si membrane have been fabricated for 300-350 GHz operation. The device consists of 5-10 parallel strips each 5 /spl mu/m long by 1 /spl mu/m wide which are coupled to a tapered slot-line antenna. The I-V characteristics and position of optimum bias point were studied in the temperature range 4.5-8 K. The performance of the mixer at higher temperatures is closer to that predicted by theory for uniform electron heating. The intermediate frequency bandwidth versus bias has also been investigated. At the operating temperature 4.2 K a bandwidth as wide as 0.8 GHz has been measured for a mixer made of 6 nm thick film. The bandwidth tends to increase with operating temperature. The performance of the NbN mixer is expected to be better for higher frequencies where the absorption of radiation should be more uniform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1622
Permanent link to this record
 

 
Author (up) Karasik, B. S.; Il'in, K. S.; Ptitsina, N. G.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen', E. V.; Krasnosvobodtsev, S. I.
Title Electron-phonon scattering rate in impure NbC films Type Abstract
Year 1998 Publication NASA/ADS Abbreviated Journal NASA/ADS
Volume Issue Pages Y35.08
Keywords NbC films
Abstract The study of the electron-phonon interaction in thin (20 nm) NbC films with electron mean free path l=2-13 nm gives an evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference ~T^2-term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5 – 10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence T^n with the exponent n = 2.5-3. This behaviour is well explained by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference American Physical Society, Annual March Meeting, March 16-20, 1998 Los Angeles, CA
Notes Approved no
Call Number Serial 1591
Permanent link to this record
 

 
Author (up) Karasik, B. S.; Milostnaya, I. I.; Zorin, M. A.; Elantev, A. I.; Gol'tsman, G. N.; Gershenzon, E. M.
Title High speed current switching of homogeneous YBaCuO film between superconducting and resistive states Type Journal Article
Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 5 Issue 2 Pages 3042-3045
Keywords YBCO HTS HEB switches
Abstract Transitions of thin structured YBaCuO films from superconducting (S) to normal (N) state and back induced by a supercritical current pulse has been studied. A subnanosecond stage in the film resistance dynamic has been observed. A more gradual (nanosecond) ramp in the time dependence of the resistance follows the fast stage. The fraction of the film resistance which is attained during the fast S-N stage rises with the current amplitude. Subnanosecond N-S switching is more pronounced for smaller amplitudes of driving current and for shorter pulses. The phenomena observed are viewed within the framework of an electron heating model. The expected switching time and repetition rate of an optimized current controlling device are estimated to be 1-2 ps and 80 GHz respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1620
Permanent link to this record
 

 
Author (up) Karasik, B.S.; Milostnaya, I.I.; Zorin, M.A.; Elantev, A.I.; Gol'tsman, G.N.; Gershenzon, E.M.
Title Subnanosecond S-N and N-S switching of YBCO film induced by current pulse Type Journal Article
Year 1994 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 235-240 Issue Pages 1981-1982
Keywords YBCO HTS switches
Abstract A transition of YBCO bridge 60 nm thick from superconducting to normal state induced by an abrupt current step has been studied. A subnanosecond stage has been observed during both S-N and N-S transition. The data obtained can be explained by hot-electron phenomena. On the basis of experimental results a prediction of picosecond switch performance has been made.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1633
Permanent link to this record
 

 
Author (up) Kaurova, N. S.; Finkel, M. I.; Maslennikov, S. N.; Vahtomin, Yu. B.; Antipov, S. V.; Smirnov, K. V.; Voronov, B. M.; Gol'tsman, G. N.; Ilyin, K. S.
Title Submillimeter mixer based on YBa2Cu3O7-x thin film Type Conference Article
Year 2004 Publication Proc. 1-st conf. Fundamental problems of high temperature superconductivity Abbreviated Journal
Volume Issue Pages 291
Keywords HTS, HEB mixer
Abstract
Address Moscow-Zvenigorod
Corporate Author Thesis
Publisher Place of Publication Moscow-Zvenigorod Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 355
Permanent link to this record
 

 
Author (up) Kawamura, J. H.; Tong, C.-Y.E.; Blundell, R.; Cosmo Papa, D.; Hunter, T. R.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title An 800 GHz NbN phonon-cooled hot-electron bolometer mixer receiver Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 3753-3756
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver developed for astronomical applications to operate in the 350 /spl mu/m atmospheric window. The waveguide receiver employs a superconductive NbN phonon-cooled hot-electron bolometer mixer. The double sideband receiver noise temperature closely follows 1 kGHz/sup -1/ across 780-870 GHz, with the intermediate frequency centered at 1.4 GHz. The conversion loss is about 15 dB. The receiver was installed for operation at the University of Arizona/Max Planck Institute for Radio Astronomy Submillimeter Telescope facility. The instrument was successfully used to conduct test observations of a number of celestial sources in a number of astronomically important spectral lines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 288
Permanent link to this record
 

 
Author (up) Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 23-28
Keywords waveguide NbN HEB mixers
Abstract The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 275
Permanent link to this record
 

 
Author (up) Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.
Title NbN hot-electron mixer measurements at 200 GHz Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 254-261
Keywords NbN HEB mixers
Abstract We present noise and gain measurements of resistively driven NbN hot-electron mixers near 200 GHz. The device geometry is chosen so that the dominant cooling process of the hot-electrons is their interaction with the lattice. Except for a single batch, the intermediate frequency cut-off of these mixer elements is – 3 700 MHz, and has shown little variation among other batches of devices. At 100 MHz we measured intrinsic mixer losses as low as —3 dB. We measured the noise temperatures at several intermediate frequencies, and for the best de- vice at 137 MHz with 20 MHz bandwidth, we measured 2000 K; using a low-noise first- stage amplifier at 1.5 GHz with 200 MHz bandwidth, the receiver noise temperature measured 2800 K. We estimate that the noise contribution from the mixer is 500 K and the total losses are —15 dB at 137 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1626
Permanent link to this record
 

 
Author (up) Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.
Volume 48 Issue 4 Pages 683-689
Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range
Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 573
Permanent link to this record
 

 
Author (up) Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
Title Fully integrated quantum photonic circuit with an electrically driven light source Type Journal Article
Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 10 Issue 11 Pages 727-732
Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector
Abstract Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1105
Permanent link to this record
 

 
Author (up) Kitaygorsky, J.; Komissarov, I.; Jukna, A.; Pan, D.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.R.
Title Dark counts in nanostructured nbn superconducting single-photon detectors and bridges Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 275-278
Keywords SSPD; SNSPD
Abstract We present our studies on dark counts, observed as transient voltage pulses, in current-biased NbN superconducting single-photon detectors (SSPDs), as well as in ultrathin (~4 nm), submicrometer-width (100 to 500 nm) NbN nanobridges. The duration of these spontaneous voltage pulses varied from 250 ps to 5 ns, depending on the device geometry, with the longest pulses observed in the large kinetic-inductance SSPD structures. Dark counts were measured while the devices were completely isolated (shielded by a metallic enclosure) from the outside world, in a temperature range between 1.5 and 6 K. Evidence shows that in our two-dimensional structures the dark counts are due to the depairing of vortex-antivortex pairs caused by the applied bias current. Our results shed some light on the vortex dynamics in 2D superconductors and, from the applied point of view, on intrinsic performance of nanostructured SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1248
Permanent link to this record
 

 
Author (up) Kitaygorsky, J.; Zhang, J.; Verevkin, A.; Sergeev, A.; Korneev, A.; Matvienko, V.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Sobolewski, R.
Title Origin of dark counts in nanostructured NbN single-photon detectors Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 545-548
Keywords SSPD dark counts, SNSPD, dark counts rate
Abstract We present our study of dark counts in ultrathin (3.5 to 10 nm thick), narrow (120 to 170 nm wide) NbN superconducting stripes of different lengths. In experiments, where the stripe was completely isolated from the outside world and kept at temperature below the critical temperature Tc, we detected subnanosecond electrical pulses associated with the spontaneous appearance of the temporal resistive state. The resistive state manifested itself as generation of phase-slip centers (PSCs) in our two-dimensional superconducting stripes. Our analysis shows that not far from Tc, PSCs have a thermally activated nature. At lowest temperatures, far below Tc, they are created by quantum fluctuations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1057
Permanent link to this record
 

 
Author (up) Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.
Title Fluctuations in two-dimensional superconducting NbN nanobridges and nanostructures meanders Type Abstract
Year 2007 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting
Volume 52 Issue 1 Pages L9.00013
Keywords
Abstract We have observed fluctuations, manifested as sub-nanosecond to nanosecond transient, millivolt-amplitude voltage pulses, generated in two-dimensional NbN nanobridges, as well as in extended superconducting meander nanostructures, designed for single photon counting. Both nanobridges and nano-stripe meanders were biased at currents close to the critical current and measured in a range of temperatures from 1.5 to 8 K. During the tests, the devices were blocked from all incoming radiation by a metallic enclosure and shielded from any external magnetic fields. We attribute the observed spontaneous voltage pulses to the Kosterlitz-Thouless-type fluctuations, where the high enough applied bias current reduces the binding energy of vortex-antivortex pairs and, subsequently, thermal fluctuations break them apart causing the order parameter to momentarily reduce to zero, which in turn causes a transient voltage pulse. The duration of the voltage pulses depended on the device geometry (with the high-kinetic inductance meander structures having longer, nanosecond, pulses) while their rate was directly related to the biasing current as well as temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1027
Permanent link to this record
 

 
Author (up) Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R.
Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
Year 2005 Publication Quantum Electronics Abbreviated Journal
Volume 35 Issue 8 Pages 698-700
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no
Call Number Serial 383
Permanent link to this record
 

 
Author (up) Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol'tsman, G.
Title New advanced generation of superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 97 Issue Pages 012307 (1 to 6)
Keywords PNR SSPD; SNSPD
Abstract We present our latest generation of ultrafast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). We have developed, fabricated and tested a multi-sectional design of NbN nanowire structures. The novel SSPD structures consist of several meander sections connected in parallel, each having a resistor connected in series. The novel SSPDs combine 10 μm × 10 μm active areas with a low kinetic inductance and PNR capability. That resulted in a significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector's response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performances of the PNR SSPDs. The PNR SSPDs are perfectly suited for fibreless free-space telecommunications, as well as for ultrafast quantum cryptography and quantum computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1245
Permanent link to this record
 

 
Author (up) Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman
Title Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors Type Journal Article
Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 26 Pages 5338-5340
Keywords SSPD, NEP, QE
Abstract We have measured the quantum efficiencysQEd, GHz counting rate, jitter, and noise-equivalentpowersNEPdof nanostructured NbN superconducting single-photon detectorssSSPDsdin thevisible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-typedevices(total area 10310mm2), operating at 4.2 K, exhibit an experimental QE of up to 20% inthe visible range and,10% at 1.3 to 1.55mm wavelength and are potentially sensitive up tomidinfrareds,10mmdradiation. The SSPD counting rate was measured to be above 2 GHz withjitter,18 ps, independent of the wavelength. The devices’ NEP varies from,10−17W/Hz1/2for1.55mm photons to,10−20W/Hz1/2for visible radiation. Lowering the SSPD operatingtemperature to 2.3 K significantly enhanced its performance, by increasing the QE to,20% andlowering the NEP level to,3310−22W/Hz1/2, both measured at 1.26mm wavelength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 532
Permanent link to this record
 

 
Author (up) Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G.
Title On-chip coherent detection with quantum limited sensitivity Type Journal Article
Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep
Volume 7 Issue 1 Pages 4812
Keywords waveguide, SSPD, SNSPD
Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.
Address National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28684752; PMCID:PMC5500578 Approved no
Call Number RPLAB @ kovalyuk @ Serial 1129
Permanent link to this record
 

 
Author (up) Krause, S.; Mityashkin, V.; Antipov, S.; Gol'tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudzinski, M.
Title Study of IF bandwidth of NbN hot electron bolometers on GaN buffer layer using a direct measurement method Type Conference Article
Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 30-32
Keywords NbN HEB, GaN buffer layer
Abstract In this paper, we present a reliable measurement method to study the influence of the GaN buffer layer on phonon-escape time in comparison with commonly used Si substrates and, in consequence, on the IF bandwidth of HEBs. One of the key aspects is to operate the HEB mixer at elevated bath temperatures close to the critical temperature of the NbN ultra-thin film, where contributions from electron-phonon processes and self-heating effects are relatively small, therefore IF roll-off will be governed by the phonon-escape.Two independent experiments were performed at GARD and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. The entire IF chain was characterized by S-parameter measurements. We compared the measurement results of epitaxial NbN grown onto GaN buffer-layer with Tc of 12.5 K (4.5nm) with high quality polycrystalline NbN films on Si substrate with Tc of 10.5K (5nm) and observed a strong indication of an enhancement of phonon escape to the substrate by a factor of two for the NbN/GaN material combination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1202
Permanent link to this record
 

 
Author (up) Kroug, M.; Cherednichenko, S.; Choumas, M.; Merkel, H.; Kollberg, E.; Hübers, H.-W.; Richter, H.; Loudkov, D.; Voronov, B.; Gol'Tsman, G.
Title HEB quasi-optical heterodyne receiver for THz frequencies Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 244-252
Keywords HEB mixer, NbN, MgO, conversion gain bandwidth, noise temperature
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 319
Permanent link to this record
 

 
Author (up) Kroug, M.; Cherednichenko, S.; Merkel, H.; Kollberg, E.; Voronov, B.; Gol'tsman, G.; Hübers, H. W.; Richter, H.
Title NbN hot electron bolometric mixers for terahertz receivers Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 962-965
Keywords NbN HEB mixers
Abstract Sensitivity and gain bandwidth measurements of phonon-cooled NbN superconducting hot-electron bolometer mixers are presented. The best receiver noise temperatures are: 700 K at 1.6 THz and 1100 K at 2.5 THz. Parylene as an antireflection coating on silicon has been investigated and used in the optics of the receiver. The dependence of the mixer gain bandwidth (GBW) on the bias voltage has been measured. Starting from low bias voltages, close to operating conditions yielding the lowest noise temperature, the GBW increases towards higher bias voltages, up to three times the initial value. The highest measured GBW is 9 GHz within the same bias range the noise temperature increases by a factor of two.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 312
Permanent link to this record
 

 
Author (up) Kroug, M.; Yagoubov, P.; Gol'tsman, G.; Kollberg, E.
Title NbN quasioptical phonon cooled hot electron bolometric mixers at THz frequencies Type Conference Article
Year 1997 Publication Inst. Phys. Conf. Ser. Abbreviated Journal Inst. Phys. Conf. Ser.
Volume 1 Issue Pages 405-408
Keywords NbN HEB mixers
Abstract
Address Veldhoven
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-3248 ISBN Medium
Area Expedition Conference 3rd Eur. Conf. on Applied Superconductivity
Notes Approved no
Call Number Serial 1600
Permanent link to this record
 

 
Author (up) Lang, P. T.; Knott, W. J.; Leipold, I.; Renk, K. F.; Semenov, A. D.; Gol'tsman, G. N.
Title Generation and detection of tunable ultrashort infrared and far-infrared radiation pulses of high intensity Type Journal Article
Year 1992 Publication Int. J. of Infrared and Millimeter Waves Abbreviated Journal Int. J. of Infrared and Millimeter Waves
Volume 13 Issue 3 Pages 373-380
Keywords CO2 IR lasers, FIR
Abstract We report on generation and detection of intense pulsed radiation with frequency tunability in the infrared and far-infrared spectral regions. Infrared radiation is generated with a transversally electrically excited high pressure CO2 laser. A laser pulse of a total duration of about 300 ns consisted, due to self mode locking, of a series of single pulses, some with pulse durations of less than 450 ps and peak powers larger than 20 MW. Using these pulses for optical with durations less than 400 ps were obtained. For detection a new ultrafast superconducting detector was used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0195-9271 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1671
Permanent link to this record
 

 
Author (up) Lang, P. T.; Leipold, I.; Knott, W. J.; Semenov, A. D.; Gol'tsman, G. N.; Renk, K. F.
Title New far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser Type Journal Article
Year 1991 Publication Appl. Phys. B Abbreviated Journal Appl. Phys. B
Volume 53 Issue 4 Pages 207-212
Keywords CO2 IR lasers, applications, CH3Cl, CH3Br
Abstract In this paper we report on the detection of new far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser. We found 80 new lines for CH3Cl and 9 new lines for CH3Br in the frequency region between 16 cm−1 and 41 cm−1, all due to stimulated Raman scattering. For the Raman gain regions bandwidths up to about 700 MHz were found. We also observed high intensity short far-infrared laser pulses of durations in the nanosecond regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0721-7269 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1678
Permanent link to this record
 

 
Author (up) Lindgren, M.; Currie, M.; Zeng, W.-S.; Sobolewski, R.; Cherednichenko, S.; Voronov, B.; Gol'tsman, G. N.
Title Picosecond response of a superconducting hot-electron NbN photodetector Type Journal Article
Year 1998 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.
Volume 6 Issue 7-9 Pages 423-428
Keywords NbN SSPD, SNSPD
Abstract The ps optical response of ultrathin NbN photodetectors has been studied by electro-optic sampling. The detectors were fabricated by patterning ultrathin (3.5 nm thick) NbN films deposited on sapphire by reactive magnetron sputtering into either a 5×10 μm2 microbridge or 25 1 μm wide, 5 μm long strips connected in parallel. Both structures were placed at the center of a 4 mm long coplanar waveguide covered with Ti/Au. The photoresponse was studied at temperatures ranging from 2.15 K to 10 K, with the samples biased in the resistive (switched) state and illuminated with 100 fs wide laser pulses at 395 nm wavelength. At T=2.15 K, we obtained an approximately 100 ps wide transient, which corresponds to a NbN detector response time of 45 ps. The photoresponse can be attributed to the nonequilibrium electron heating effect, where the incident radiation increases the temperature of the electron subsystem, while the phonons act as the heat sink. The high-speed response of NbN devices makes them an excellent choice for an optoelectronic interface for superconducting digital circuits, as well as mixers for the terahertz regime. The multiple-strip detector showed a linear dependence on input optical power and a responsivity =3.9 V/W.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0964-1807 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1584
Permanent link to this record
 

 
Author (up) Lindgren, M.; Zorin, M. A.; Trifonov, V.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol'tsman, G. N.; Gershenzon, E. M.
Title Optical mixing in a patterned YBa2Cu3O7-δ thin film Type Journal Article
Year 1994 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 65 Issue 26 Pages 3398-3400
Keywords YBCO HTS HEB mixer, bandwidth
Abstract Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 251
Permanent link to this record
 

 
Author (up) Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 12 Pages 1689-1692
Keywords NbN SSPD, SNSPD, QE, jitter, dark counts
Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1533
Permanent link to this record
 

 
Author (up) Lobanov, Y. V.; Tong, Cheuk-Yu E.; Hedden, A. S.; Blundell, R.; Gol'tsman, G. N.
Title Microwave-assisted슠measurement슠of the슠frequency슠response슠of슠terahertz슠HEB슠mixers슠with a슠fourier슠transform슠spectrometer Type Conference Article
Year 2010 Publication 21st International Symposium on Space Terahertz Technology Abbreviated Journal 21st ISSTT
Volume Issue Pages 420-423
Keywords HEB mixer
Abstract We describe a novel method of operation of the HEB direct detector for use with a Fourier Transform Spectrometer. Instead of elevating the bath temperature, we have measured the RF response of waveguide HEB mixers by applying microwave radiation to select appropriate bias conditions. In our experiment, a microwave signal is injected into the HEB mixer via its IF port. By choosing an appropriate injection level, the device can be operated close to the desired operating point. Furthermore, we have shown that both thermal biasing and microwave injection can reproduce the same spectral response of the HEB mixer. However, with the use of microwave injection, there is no need to wait for the mixer to reach thermal equilibrium, so characterisation can be done in less time. Also, the liquid helium consumption for our wet cryostat is also reduced. We have demonstrated that the signalto-noise ratio of the FTS measurements can be improved with microwave injection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 725
Permanent link to this record
 

 
Author (up) Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N.
Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300704 (1 to 4)
Keywords HEB mixer, IR, optical antenna
Abstract Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 952
Permanent link to this record
 

 
Author (up) Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N.
Title Superconducting nanowire single photon detector for coherent detection of weak signals Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords NbN SSPD mixer, SNSPD, nanophotonic waveguide
Abstract Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1206
Permanent link to this record
 

 
Author (up) Lobanov, Y.; Tong, C.; Blundell, R.; Gol'tsman, G.
Title A study of direct detection effect on the linearity of hot electron bolometer mixers Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT
Volume Issue Pages 282-287
Keywords HEB mixer, direct detection effect
Abstract We have performed a study of how direct detection affects the linearity and hence the calibration of an HEB mixer. Two types of waveguide HEB devices have been used: a 0.8 THz HEB mixer and a 1.0 THz HEB mixer which is ~5 times smaller than the former. Two independent experimental approaches were used. In the ΔG/G method, the conversion gain of the HEB mixer is first measured as a function of the bias current for a number of bias voltages. At each bias setting, we carefully measure the change in the operating current when the input loads are switched. From the measured data, we can derive the expected difference in gain between the hot and cold loads. In the second method (injection method [1]), the linearity of the HEB mixer is independently measured by injecting a modulated signal for different input load temperatures. The results of both approaches confirm that there is gain compression in the operation of HEB mixers. Based on the results of our measurements, we discuss the impact of direct detection effects on the operation of HEB mixers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 724
Permanent link to this record
 

 
Author (up) Lobanov, Y.; Tong, E.; Blundell, R.; Hedden, A.; Voronov, B.; Gol'tsman, G.
Title Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 628-631
Keywords waveguide NbN HEB mixers
Abstract We present a study of the large signal frequency response of an HEB mixer over a wide frequency range. In our experiments, we have subjected the HEB mixer to incident electromagnetic radiation from 0.3 GHz to 1 THz. The mixer element is an NbN film deposited on crystalline quartz. The mixer chip is mounted in a waveguide cavity, coupled to free space with a diagonal horn. At microwave frequencies, electromagnetic radiation is applied through the coaxial bias port of the mixer block. At higher frequencies the input signal passes via the diagonal horn feed. At each frequency, the incident power is varied and a family of I-V curves is recorded. From the curves we identify 3 distinct regimes of operation of the mixer separated by the phonon relaxation frequency and the superconducting energy gap frequency observed at about 3 GHz and 660 GHz respectively. In this paper, we will present observed curves and discuss the results of our experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 719
Permanent link to this record
 

 
Author (up) Lobanov, Y.V.; Tong, C.-Y.E.; Hedden, A.S.; Blundell, R.; Voronov, B.M.; Gol'tsman, G.N.
Title Direct measurement of the gain and noise bandwidths of HEB mixers Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 21 Issue 3 Pages 645-648
Keywords waveguide NbN HEB mixers
Abstract The intermediate frequency (IF) bandwidth of a hot electron bolometer (HEB) mixer is an important parameter of the mixer, in that it helps to determine its suitability for a given application. With the availability of wideband low noise amplifiers, it is simple to measure the performance of an HEB mixer over a wide range of IF at a fixed LO frequency using the standard Y-factor method. This in-situ method allows us to measure both the gain and noise bandwidths simultaneously. We have also measured mixer output impedance with a vector network analyser. Intrinsic time constant has been extracted from the impedance data and compared to the mixer's bandwidths determined from receiver Y-factor measurement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 720
Permanent link to this record
 

 
Author (up) Loudkov, D.; Khosropanah, P.; Cherednichenko, S.; Adam, A.; MerkeI, H.; Kollberg, E.; Gol'tsman, G.
Title Broadband fourier transform spectrometer (FTS) measurements of spiral and double-slot planar antennas at THz frequencies Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 373-369
Keywords NbN HEB mixers
Abstract The direct responses of NbN phonon-cooled hot electron bolometer (HEB) mixers, integrated with different planar antennas, are measured, using Fourier Transform Spectrometer (F1S). One spiral antenna and several double slot antennas, designed for 0.6, 1.4, 1.6, 1.8 and 2.5 THz central frequencies, are investigated. The Optimization of the measurement set-up is discussed in terms of the beam splitter and the F11S-to-HEB coupling. The result shows that the spiral antenna is circular polarized and has a bandwidth of about 2 THz. The frequency bands of double slot antennas show some shift from the design values and their relative bandwidth increases by increasing the design frequency. The antenna responses do not depend on the HEB bias point and temperature, as long as the device is in the resistive state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1530
Permanent link to this record
 

 
Author (up) Loudkov, D.; Tong, C. Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol'tsman, G.
Title An investigation of the performance of the superconducting HEB슠mixer as a function of its RF슠embedding impedance Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 15 Issue 2 Pages 472-475
Keywords HEB mixer
Abstract
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 371
Permanent link to this record
 

 
Author (up) Lusche, R.; Semenov, A.; Il'in, K.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Hubers, H.; Siegel, M.; Gol'tsman, G.
Title Effect of the wire width and magnetic field on the intrinsic detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2200205-2200205
Keywords SSPD, SNSPD
Abstract We present thorough measurements of the intrinsic detection efficiency in the wavelength range from 350 to 2500 nm for meander-type TaN and NbN superconducting nanowire single-photon detectors with different widths of the nanowire. The width varied from 70 nm to 130 nm. The open-beam configuration allowed us to accurately normalize measured spectra and to extract the intrinsic detection efficiency. For detectors from both materials the intrinsic detection efficiency at short wavelengths amounts at 100% and gradually decreases at wavelengths larger than the specific cut-off wavelengths, which decreases with the width of the nanowire. Furthermore, we show that applying weak magnetic fields perpendicular to the meander plane decreases the smallest detectable photon flux.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1376
Permanent link to this record
 

 
Author (up) Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W.
Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 89 Issue 10 Pages 104513 (1 to 7)
Keywords NbN SSPD, SNSPD
Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1367
Permanent link to this record
 

 
Author (up) Manova, N. N.; Korneeva, Yu. P.; Korneev, A. A.; Slysz, W.; Voronov, B. M.; Gol'tsman, G. N.
Title Superconducting NbN single-photon detector integrated with quarter-wave resonator Type Journal Article
Year 2011 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 37 Issue 5 Pages 469-471
Keywords SSPD, SNSPD
Abstract The spectral dependence of the quantum efficiency of superconducting NbN single-photon detectors integrated with quarter-wave resonators based on Si3N4, SiO2, and SiO layers has been studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 664
Permanent link to this record
 

 
Author (up) Marksteiner, M.; Divochiy, A.; Sclafani, M.; Haslinger, P.; Ulbricht, H.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M.
Title A superconducting NbN detector for neutral nanoparticles Type Journal Article
Year 2009 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 20 Issue 45 Pages 455501
Keywords SSPD; SNSPD; *Electric Conductivity; Microscopy, Electron, Scanning; Nanoparticles/*chemistry/ultrastructure; Nanotechnology/*methods; *Photons
Abstract We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.
Address University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. markus.arndt@univie.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:19822928 Approved no
Call Number Serial 1239
Permanent link to this record
 

 
Author (up) Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M.
Title Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 177-179
Keywords directly coupled NbN HEB mixers
Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Paris, France Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 386
Permanent link to this record
 

 
Author (up) Maslennikov, S.; Antipov, S.; Shishkov, A.; Svechnikov, S.; Voronov, B.; Smirnov, K.; Kaurova, N.; Drakinski, V.; Gol'tsman, G.
Title NbN HEB mixer noise temperature measurements with hot/cold load mounted inside the helium cryostat at 300 GHz Type Conference Article
Year 2002 Publication Proc. Int. Student Seminar on Microwave Appl. of Novel Physical Phenomena supported by IEEE Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher LETI Place of Publication St.-Petersburg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 324
Permanent link to this record
 

 
Author (up) Maslennikov, S.; Vachtomin, Yu.; Antipov, S.; Smirnov, K.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol'tsman, G.
Title NbN HEB mixers for frequencies of 2.5 and 3.8 THz Type Conference Article
Year 2004 Publication Proc. Tenth All-Russian sceintific conference of student-physicists and young sceintists (VNKSF-10) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Moscow Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ qoheb_vnksf10_2004 Serial 349
Permanent link to this record
 

 
Author (up) Mehdi, I.; Gol'tsman, G.; Putz, P.
Title Introduction to the mini-special-issue on the 25th international symposium on space terahertz technology (ISSTT) Type Miscellaneous
Year 2015 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume 5 Issue 1 Pages 14-15
Keywords
Abstract THE 25th International Symposium on Space Terahertz Technology (ISSTT) was held in Moscow, Russia, between April 27–30, 2014. The conference was organized by Moscow State Pedagogical University and the Higher School of Economics (National Research University) and Chaired by Professor Gregory Gol'tsman of Moscow State Pedagogical University. The conference was attended by roughly 150 participants from 15 countries. The technology covered by ISSTT includes detectors, devices, circuits and systems in various areas of THz science and technology. Each year this symposium brings together the global THz space science technology community, and as such, emphasizes the broad international collaboration that is required to execute these large complicated instrument programs that dominate this field. However, talks covering technologies for balloon, aircraft, and ground-based telescopes were also presented.

In this special section of IEEE Transactions on Terahertz Science and Technology, we include eight expanded papers from the 25th ISSTT symposium. The papers range from development of SIS mixers to optical adjustment systems for radio telescopes. The 26th ISSTT will be held in Boston, MA, USA, during March 16–18, 2015. Researchers and scientist involved in THz research are invited to attend this symposium (more details are at http://www.cfa.harvard.edu/events/2015/isstt2015/).

You can access the full list of papers presented at the ISSTT symposia from the National Radio Astronomy Observatory website: http://www.nrao.edu/meetings/isstt/index.shtml

Yours sincerely
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1353
Permanent link to this record
 

 
Author (up) Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G.
Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.
Volume 52 Issue 10 Pages 2338-2343
Keywords NbN HEB mixer, applications
Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1484
Permanent link to this record
 

 
Author (up) Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 13 Issue 2 Pages 164-167
Keywords NbN HEB mixer
Abstract In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 341
Permanent link to this record
 

 
Author (up) Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 65-72
Keywords waveguide NbN HEB mixers
Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harvard university
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 326
Permanent link to this record
 

 
Author (up) Milostnaya, I.; Korneev, A.; Rubtsova, I.; Seleznev, V.; Minaeva, O.; Chulkova, G.; Okunev, O.; Voronov, B.; Smirnov, K.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Guziewicz, M.; Bar, J.; Gorska, M.; Pearlman, A.; Kitaygorsky, J.; Cross, A.; Sobolewski, R.
Title Superconducting single-photon detectors designed for operation at 1.55-µm telecommunication wavelength Type Conference Article
Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 43 Issue Pages 1334-1337
Keywords NbN SSPD, SNSPD
Abstract We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1450
Permanent link to this record
 

 
Author (up) Mohan, N.; Minaeva, O.; Gol'tsman, G. N.; Nasr, M. B.; Saleh, B. E.; Sergienko, A. V.; Teich, M. C.
Title Photon-counting optical coherence-domain reflectometry using superconducting single-photon detectors Type Journal Article
Year 2008 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 16 Issue 22 Pages 18118-18130
Keywords SSPD, SNSPD
Abstract We consider the use of single-photon counting detectors in coherence-domain imaging. Detectors operated in this mode exhibit reduced noise, which leads to increased sensitivity for weak light sources and weakly reflecting samples. In particular, we experimentally demonstrate the possibility of using superconducting single-photon detectors (SSPDs) for optical coherence-domain reflectometry (OCDR). These detectors are sensitive over the full spectral range that is useful for carrying out such imaging in biological samples. With counting rates as high as 100 MHz, SSPDs also offer a high rate of data acquisition if the light flux is sufficient.
Address Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. nm82@bu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:18958090 Approved no
Call Number Serial 1407
Permanent link to this record
 

 
Author (up) Morozov, P.; Lukina, M.; Shirmanova, M.; Divochiy, A.; Dudenkova, V.; Gol'tsman, G. N.; Becker, W.; Shcheslavskiy, V. I.
Title Singlet oxygen phosphorescence imaging by superconducting single-photon detector and time-correlated single-photon counting Type Journal Article
Year 2021 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 46 Issue 6 Pages 1217-1220
Keywords SSPD, SNSPD, applications
Abstract This Letter presents, to the best of our knowledge, a novel optical configuration for direct time-resolved measurements of luminescence from singlet oxygen, both in solutions and from cultured cells on photodynamic therapy. The system is based on the superconducting single-photon detector, coupled to the confocal scanner that is modified for the near-infrared measurements. The recording of a phosphorescence signal from singlet oxygen at 1270 nm has been done using time-correlated single-photon counting. The performance of the system is verified by measuring phosphorescence from singlet oxygen generated by the photosensitizers commonly used in photodynamic therapy: methylene blue and chlorin e6. The described system can be easily upgraded to the configuration when both phosphorescence from singlet oxygen and fluorescence from the cells can be detected in the imaging mode. Thus, co-localization of the signal from singlet oxygen with the areas inside the cells can be done.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:33720151 Approved no
Call Number Serial 1221
Permanent link to this record
 

 
Author (up) Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol'tsman, G.; Bezryadin, A.
Title Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts Type Journal Article
Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 5 Issue Pages 10174 (1 to 10)
Keywords SPD, SSPD, SNSPD
Abstract We perform measurements of the switching current distributions of three w approximately 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.
Address Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:25988591; PMCID:PMC4437302 Approved no
Call Number Serial 1344
Permanent link to this record
 

 
Author (up) Nebosis, R. S.; Heusinger, M. A.; Semenov, A. D.; Lang, P. T.; Schatz, W.; Steinke, R.; Renk, K. F.; Gol'tsman, G. N.; Karasik, B. S.; Gershenzon, E. M.
Title Ultrafast photoresponse of an YBa2Cu3O7-δ film to far-infrared radiation pulses Type Journal Article
Year 1993 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 18 Issue 2 Pages 96-97
Keywords YBCO HTS detectors
Abstract We report the observation of an ultrafast photoresponse of a high-T(c), film to far-infrared radiation pulses. The response of a sample, consisting of a current-carrying structured YBa(2)Cu(3)O(7-delta) film cooled to liquid-nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far-infrared laser in the frequency range from 0.7 to 7 THz. We found that the response time was limited by the time resolution, 120 ps, of our electronic registration equipment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:19802049 Approved no
Call Number Serial 1660
Permanent link to this record
 

 
Author (up) Okunev, 0.; Dzardranov, A.; Gol'tsman, G.; Gershenzon, E.
Title Performances of hot—electron superconducting mixer for frequencies less than the gap energy: NbN mixer for 100 GHz operation Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 247-253
Keywords NbN HEB mixers
Abstract The possibilities to improve the parameters of the 100 GHz NbN HEB superconducting waveguide mixers have been studied. The device consists of a signal strip 1 gm wide by 2 Am long made of 40 A thick NbN film. The best operation point was found at 5 K, where the mixer bandwidth made up 1.5-2 GHz and the total loss diminished down to 8 dB. The critical current density has been increased up to " 40 6 A/cm 2 , the noise temperature of the receiver (DSB) has reduced down to 450 K and the local oscillator power has decreased down to -.4).1 mcV.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1625
Permanent link to this record
 

 
Author (up) Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, Roman
Title Ultrafast NBN hot-electron single-photon detectors for electronic applications Type Abstract
Year 2002 Publication Abstracts 8-th IUMRS-ICEM Abbreviated Journal Abstracts 8-th IUMRS-ICEM
Volume Issue Pages
Keywords NbN SSPD, SNSPD
Abstract We present a new, simple to manufacture, single-photon detector (SPD), which can work from ultraviolet to near-infrared wavelengths of optical radiation and combines high speed of operation, high quantum efficiency (QE), and very low dark counts. The devices are superconducting and operate at temperature below 5 K. The physics of operation of our SPD is based on formation of a photon-induced resistive hotspot and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconductor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 8th IUMRS International Conference on Electronic Materials
Notes Approved no
Call Number Serial 1532
Permanent link to this record
 

 
Author (up) Ozhegov, R. V.; Gorshkov, K. N.; Gol'tsman, G. N.; Kinev, N. V.; Koshelets, V. P.
Title The stability of a terahertz receiver based on a superconducting integrated receiver Type Journal Article
Year 2011 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 24 Issue 3 Pages 035003
Keywords SIS mixer, SIR, stability
Abstract We present the results of stability testing of a terahertz radiometer based on a superconducting receiver with a SIS tunnel junction as the mixer and a flux-flow oscillator as the local oscillator. In the continuum mode, the receiver with a noise temperature of 95 K at 510 GHz measured over the intermediate frequency (IF) passband of 4-8 GHz offered a noise equivalent temperature difference of 10 ± 1 mK at an integration time of 1 s. We offer a method to significantly increase the integration time without the use of complex measurement equipment. The receiver observed a strong signal over a final detection bandwidth of 4 GHz and offered an Allan time of 5 s.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 705
Permanent link to this record
 

 
Author (up) Ozhegov, R.; Maslennikov, S.; Morozov, D.; Okunev, O.; Smirnov, K.; Gol'tsman, G.
Title Imaging system for submillimeter wave range Type Conference Article
Year 2004 Publication Proc. Tenth All-Russian sceintific conference of student-physicists and young sceintists (VNKSF-10) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Moscow Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ thzimaging_vnksf10_2004 Serial 347
Permanent link to this record
 

 
Author (up) Ozhegov, R.; Morozov, D.; Maslennikov, S.; Okunev, O.; Smirnov, K.; Gol'tsman, G.
Title Submillimeter wave range imaging system for registering human body radiation and finding out the things covered under clothes Type Conference Article
Year 2004 Publication Proc. 3rd Int. exhibition and conf. Non-Destructive Testing Equipment and Devices Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Moscow Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 345
Permanent link to this record
 

 
Author (up) Peltonen, J. T.; Peng, Z. H.; Korneeva, Yu. P.; Voronov, B. M.; Korneev, A. A.; Semenov, A. V.; Gol'tsman, G. N.; Tsai, J. S; Astafiev, Oleg
Title Coherent dynamics and decoherence in a superconducting weak link Type Journal Article
Year 2016 Publication Physic. Rev. B, Abbreviated Journal Physic. Rev. B,
Volume 94 Issue Pages 180508
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 1123
Permanent link to this record
 

 
Author (up) Polyakova, M.; Semenov, A. V.; Kovalyuk, V.; Ferrari, S.; Pernice, W. H. P.; Gol'tsman, G. N.
Title Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency Type Journal Article
Year 2019 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 29 Issue 5 Pages 1-5
Keywords SSPD, waveguide-integrated SNSPD, hot-spot interaction length
Abstract We present a simple quantum detector tomography protocol, which allows, without ambiguities, to measure the two-spot detection efficiency and extract the hot-spot interaction length of superconducting nanowire single photon detectors (SNSPDs) with unity intrinsic detection efficiency. We identify a significant parasitic contribution to the measured two-spot efficiency, related to an effect of the bias circuit, and find a way to rule out this contribution during data post-processing and directly in the experiment. From the data analysis for waveguide-integrated SNSPD, we find signatures of the saturation of the two-spot efficiency and hot-spot interaction length of order of 100 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1187
Permanent link to this record
 

 
Author (up) Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J.
Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.
Volume 13 Issue 4 Pages 934-943
Keywords SSPD, SNSPD
Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-260X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1424
Permanent link to this record
 

 
Author (up) Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N.
Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 853-855
Keywords YBCO HTS HEB mixers
Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1563
Permanent link to this record
 

 
Author (up) Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G. N.
Title NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT
Volume Issue Pages 151-154
Keywords HEB, mixer, bandwidth, noise temperatue, in-situ contacts, in situ contacts
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Charlottesville, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 590
Permanent link to this record
 

 
Author (up) Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume 52 Issue 8 Pages 576-582
Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel
Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 599
Permanent link to this record
 

 
Author (up) Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G.
Title Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 391-394
Keywords NbN HEB mixers
Abstract We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1427
Permanent link to this record
 

 
Author (up) Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E.
Title Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal
Volume 12 Issue 11 Pages 748-750
Keywords NbN HEB mixers
Abstract We report on noise temperature measurements of an NbN phonon-cooled hot-electron bolometric mixer in the terahertz frequency range. The devices were 3 nm thick films with in-plane dimensions 1.7 × 0.2 µm2 and 0.9 × 0.2 µm2 integrated in a complementary logarithmic-spiral antenna. Measurements were performed at seven frequencies ranging from 0.7 THz to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz) and 8800 K (5.2 THz).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 298
Permanent link to this record
 

 
Author (up) Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E.
Title Noise temperature and sensitivity of a NbN hot-electron mixer at frequencies from 0.7 THz to 5.2 THz Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 190-199
Keywords NbN HEB mixers
Abstract We report on noise temperature measurements of a NbN phonon-cooled hot-electron bolometric mixer at different bias regimes. The device was a 3 nm thick bridge with in-plane dimensions of 1.7 x 0.2 gm 2 integrated in a complementary logarithmic spiral antenna. Measurements were performed at frequencies ranging from 0.7 THz up to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz) 5600 K (4.3 THz) and 8800 K (5.2 THz). Two bias regimes are possible in order to achieve low noise temperatures. But only one of them yields sensitivity fluctuations close to the theoretical limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1573
Permanent link to this record
 

 
Author (up) Schubert, J.; Semenov, A.; Hübers, H.-W.; Gol'tsman, G.; Schwaab, G.; Voronov, B.; Gershenzon, E.
Title Broad-band terahertz NbN hot-electron bolometric mixer Type Conference Article
Year 1999 Publication Inst. Phys. Conf. Abbreviated Journal Inst. Phys. Conf.
Volume 167 Issue Pages 663-666
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 4th Europ. Conf. on Appl. Superconductivity, Barcelona, Spain, 14-17 September 1999
Notes Approved no
Call Number Serial 1578
Permanent link to this record
 

 
Author (up) Schuck, C.; Pernice, W. H. P.; Minaeva, O.; Li, Mo; Gol'tsman, G.; Sergienko, A. V.; Tang, H. X.
Title Matrix of integrated superconducting single-photon detectors with high timing resolution Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2201007-2201007
Keywords NbN SSPD, SNSPD, array, matrix
Abstract We demonstrate a large grid of individually addressable superconducting single photon detectors on a single chip. Each detector element is fully integrated into an independent waveguide circuit with custom functionality at telecom wavelengths. High device density is achieved by fabricating the nanowire detectors in traveling wave geometry directly on top of silicon-on-insulator waveguides. Our superconducting single photon detector matrix includes detector designs optimized for high detection efficiency, low dark count rate, and high timing accuracy. As an example, we exploit the high timing resolution of a particularly short nanowire design to resolve individual photon round-trips in a cavity ring-down measurement of a silicon ring resonator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1373
Permanent link to this record
 

 
Author (up) Schwaab, G. W.; Hübers, H.-W.; Schubert, J.; Erichsen, Patrik; Gol'tsman, G.; Semenov, A.; Verevkin, A.; Cherednichenko, S.; Gershenzon, E.
Title A high resolution spectrometer for the investigation of molecular structures in the THZ range Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 530-538
Keywords antireflection coatings, dielectric mirrors
Abstract A status report on the design study of a novel tunable far-infrared (TuFTR) spectrometer for the investigation of the structure of weakly bound molecular complexes is given. The goal is a sensitive TuFIR spectrometer with full frequency coverage from 1-6 THz. To hit the goal, advanced sources (e.g. p-Ge lasers) and detectors (e.g. superconducting hot electron bolometric (HEB) mixers) shall be employed to extend the technique of cavity ringdown spectroscopy, that is currently used at optical and infrared frequencies to the FIR spectral range. Critical for such a system are high-Q resonators that still allow good optical coupling, and wideband antireflection coatings to increase detector sensitivity and decrease optical path losses. 2 nd order effective media theory and an iterative multilayer algorithm have been employed to design wideband antireflection coatings for dielectrics with large dielectric constants like Ge or Si. Taking into account 6 layers, for Si bandwidths of 100% of the center frequency could be obtained with power reflectivities below 1% for both polarizations simultaneously. Wideband dielectric mirrors including absorption losses were also studied yielding a bandwidth of about 50% with reflectivities larger than 99.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1577
Permanent link to this record
 

 
Author (up) Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E.
Title Investigation of NbN phonon-cooled HEB mixers at 2.5 THz Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 4233-4236
Keywords NbN HEB mixers
Abstract The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 550
Permanent link to this record