|   | 
Details
   web
Records
Author (up) Benford, Dominic J.; Moseley, S. Harvey; Chervenak, Jay A.
Title Mission requirements for ultralow-background, large format bolometer arrays Type Conference Article
Year 2002 Publication Proc. Far-Infrared Submillimeter, & Millimeter Detector Workshop Abbreviated Journal
Volume Issue Pages
Keywords applicationsns
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Monterey, California Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 490
Permanent link to this record
 

 
Author (up) Benford, Dominic; Moseley, Harvey; Zmuidzinas, Jonas
Title Direct detectors for the Einstein inflation probe Type Conference Article
Year 2009 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 155 Issue 1 Pages 012001 (1 to 49)
Keywords KID, MKID, CMB
Abstract Here we review the principles of operation, history, present status, and future prospects for the primary candidate detectors for Cosmic Microwave Background (CMB) polarization studies. The three detector types we will discuss are semiconductor-based bolometers, superconducting transition edge sensor (TES) bolometer, and Microwave Kinetic Inductance Detectors (MKIDs). All of these detector types can provide the sensitivity to permit background-limited measurements of the CMB, but the ultimate selection of detectors will be largely determined by the ease of production and reliability of large arrays of such detectors. This paper describes the present state of development of these detectors, efforts to integrate them into large arrays, and the detector system developments necessary to enable a space CMB polarization mission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 913
Permanent link to this record
 

 
Author (up) Bennett, Douglas A.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.
Title Phase-slip lines as a resistance mechanism in transition-edge sensors Type Journal Article
Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 104 Issue Pages 042602
Keywords microbolometers, TES, phase-slip lines, PSL
Abstract The fundamental mechanism of resistance in voltage-biased superconducting films is poorly understood despite its importance as the basis of transition-edge sensors (TESs). TESs are utilized in state-of-the-art microbolometers and microcalorimeters covering a wide range of energies and applications. We present a model for the resistance of a TES based on phase-slip lines (PSLs) and compare the model to data. One of the model's predictions, discrete changes in the number of PSLs, is a possible explanation for the observed switching between discrete current states in localized regions of bias.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 929
Permanent link to this record
 

 
Author (up) Benz, A. O.; Bruderer, S.; van Dishoeck, E. F.; Stäuber, P.; Wampfler, S. F.; Melchior, M.; Dedes, C.; Wyrowski, F.; Doty, S. D.; van der Tak, F.; Bächtold, W.; Csillaghy, A.; Megej, A.; Monstein, C.; Soldati, M.; Bachiller, R.; Baudry, A.; Benedettini, M.; Bergin, E.; Bjerkeli, P.; Blake, G. A.; Bontemps, S.; Braine, J.; Caselli, P.; Cernicharo, J.; Codella, C.; Daniel, F.; di Giorgio, A. M.; Dieleman, P.; Dominik, C.; Encrenaz, P.; Fich, M.; Fuente, A.; Giannini, T.; Goicoechea, J. R.; de Graauw, Th.; Helmich, F.; Herczeg, G. J.; Herpin, F.; Hogerheijde, M. R.; Jacq, T.; Jellema, W.; Johnstone, D.; Jørgensen, J. K.; Kristensen, L. E.; Larsson, B.; Lis, D.; Liseau, R.; Marseille, M.; McCoey, C.; Melnick, G.; Neufeld, D.; Nisini, B.; Olberg, M.; Ossenkopf, V.; Parise, B.; Pearson, J. C.; Plume, R.; Risacher, C.; Santiago-García, J.; Saraceno, P.; Schieder, R.; Shipman, R.; Stutzki, J.; Tafalla, M.; Tielens, A. G. G. M.; van Kempen, T. A.; Visser, R.; Yıldız, U. A.
Title Hydrides in young stellar objects: Radiation tracers in a protostar-disk-outflow system Type Journal Article
Year 2010 Publication Astron. Astrophys. Abbreviated Journal
Volume 521 Issue Pages L35 (1 to 5)
Keywords HEB mixer applications, HIFI, Herschel
Abstract Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays.

Aims. We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation.

Methods. W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (2500 s) in 8 spectral regions.

Results. The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1–0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds.

Conclusions. The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1082
Permanent link to this record
 

 
Author (up) Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang
Title Experimental loss-tolerant quantum coin flipping Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 2 Issue 561 Pages 7
Keywords fromIPMRAS
Abstract Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 766
Permanent link to this record