toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Bennett, Douglas A.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N. doi  openurl
  Title Phase-slip lines as a resistance mechanism in transition-edge sensors Type Journal Article
  Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 104 Issue Pages 042602  
  Keywords microbolometers, TES, phase-slip lines, PSL  
  Abstract The fundamental mechanism of resistance in voltage-biased superconducting films is poorly understood despite its importance as the basis of transition-edge sensors (TESs). TESs are utilized in state-of-the-art microbolometers and microcalorimeters covering a wide range of energies and applications. We present a model for the resistance of a TES based on phase-slip lines (PSLs) and compare the model to data. One of the model's predictions, discrete changes in the number of PSLs, is a possible explanation for the observed switching between discrete current states in localized regions of bias.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 929  
Permanent link to this record
 

 
Author (down) Bell, Matthew; Sergeev, Andrei; Goltsman, Gregory; Bird, Jonathan; Verevkin, Aleksandr url  openurl
  Title Transition-edge sensors based on superconducting nanowires Type Abstract
  Year 2006 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting  
  Volume Issue Pages B38.00001  
  Keywords NbN nanowire TES  
  Abstract We present our experimental study of superconducting NbN nanowire-based sensor. The responsivity of the sensor is strongly affected by the superconducting transition width of the nanostructure, which, in turn, is determined by the phase slip centers (PCSs) dynamics. The fluctuations and noise properties of the sensor are also discussed, as well as the devices' behavior at high magnetic fields. The ultimate performance of the sensor and prospects of the devices will be discussed, as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1455  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: