|   | 
Details
   web
Records
Author (down) Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G.
Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 2-3 Pages 334-344
Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN
Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 701
Permanent link to this record
 

 
Author (down) Manova, N. N.; Smirnov, E. O.; Korneeva, Yu. P.; Korneev, A. A.; Goltsman, G. N.
Title Superconducting photon counter for nanophotonics applications Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012147 (1 to 5)
Keywords SSPD, SNSPD
Abstract We develop large area superconducting single-photon detector SSPD with a micron-wide strip suitable for free-space coupling or packaging with multi-mode optical fibres. The detector sensitive area is 20 μm in diameter. In near infrared (1330 nm wavelength) our SSPD exhibits above 30% detection efficiency with low dark counts and 45 ps timing jitter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1271
Permanent link to this record
 

 
Author (down) Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W.
Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
Year 2014 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 116 Issue 4 Pages 043906 (1 to 9)
Keywords NbN SSPD, SNSPD, TaN
Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1357
Permanent link to this record
 

 
Author (down) Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A.
Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
Year 2021 Publication Optical Engineering Abbreviated Journal Optical Engineering
Volume 60 Issue 8 Pages 1-8
Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer
Abstract Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/1.Oe.60.8.082019 Serial 1260
Permanent link to this record
 

 
Author (down) Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Heterodyne spectroscopy with superconducting single-photon detector Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01005
Keywords SSPD mixer, SNSPD
Abstract We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1205
Permanent link to this record
 

 
Author (down) Kuzin, A.; Kovalyuk, V.; Golikov, A.; Prokhodtsov, A.; Marakhin, A.; Ferrari, S.; Pernice, W.; Gippius, N.; Goltsman, G.
Title Efficiency of focusing grating couplers versus taper length and angle Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012181
Keywords focusing grating coupler
Abstract Here we experimentally studied dependence of a focusing grating coupler efficiency versus taper length and angle on silicon nitride platform. As a result, we obtained a dependence for the efficiency of a focusing grating coupler on the parameters of the taper length and angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1184
Permanent link to this record
 

 
Author (down) Kovalyuk, V.; Kahl, O.; Ferrari, S.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title On-chip single-photon spectrometer for visible and infrared wavelength range Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051045
Keywords single-photon spectrometer
Abstract Here we show our latest progress in the field of a single-photon spectrometer for the visible and infrared wavelengths ranges implementation. We consider three different on-chip approaches: a coherent spectrometer with a low power of the heterodyne, a coherent spectrometer with a high power of the heterodyne, and an eight-channel single-photon spectrometer for direct detection. Along with high efficiency, spectrometers show high detection efficiency and temporal resolution through the use of waveguide integrated superconducting nanowire single-photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1197
Permanent link to this record
 

 
Author (down) Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P.
Title Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits Type Journal Article
Year 2013 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 21 Issue 19 Pages 22683-22692
Keywords SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides
Abstract We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:24104155 Approved no
Call Number Serial 1213
Permanent link to this record
 

 
Author (down) Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Lobanov, Yu; Shcherbatenko, M.; Korneev, A; Pernice, W.; Goltsman, G.
Title Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application Type Conference Volume
Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN
Volume Issue Pages 421-422
Keywords waveguide, SSPD, SNSPD
Abstract By adopting a travelling-wave geometry approach, integrated superconductor- nanophotonic devices were fabricated. The architecture consists of a superconducting NbN- nanowire atop of a silicon nitride (Si 3 N 4 ) nanophotonic waveguide. NbN-nanowire was operated as a single-photon counting detector, with up to 92% on-chip detection efficiency (OCDE), in the coherent mode, serving as a highly sensitive IR heterodyne mixer with spectral resolution (f/df) greater than 10^6 in C-band at 1550 nm wavelength.
Address St. Petersburg, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1140 Approved no
Call Number Serial 1256
Permanent link to this record
 

 
Author (down) Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Lobanov, Y.; Shcherbatenko, M.; Korneev, A.; Pernice, W.; Goltsman, G.
Title Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application Type Conference Article
Year 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 917 Issue Pages 062032
Keywords SSPD, SNSPD, waveguide
Abstract With use of the travelling-wave geometry approach, integrated superconductor- nanophotonic devices based on silicon nitride nanophotonic waveguide with a superconducting NbN-nanowire suited on top of the waveguide were fabricated. NbN-nanowire was operated as a single-photon counting detector with up to 92 % on-chip detection efficiency in the coherent mode, serving as a highly sensitive IR heterodyne mixer with spectral resolution (f/df) greater than 106 in C-band at 1550 nm wavelength
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1140
Permanent link to this record
 

 
Author (down) Kovaluyk, V.; Lazarenko, P.; Kozyukhin, S.; An, P.; Prokhodtsov, A.; Goltsman, G.; Sherchenkov, A.
Title Influence of the phase state of Ge2Sb2Te5 thin cover on the parameters of the optical waveguide structures Type Abstract
Year 2019 Publication Proc. Amorphous and Nanostructured Chalcogenides Abbreviated Journal Proc. Amorphous and Nanostructured Chalcogenides
Volume Issue Pages 47-48
Keywords optical waveguides
Abstract The fast switching time of Ge-Sb-Te thin films between amorphous and crystalline states initiated by laser beam as well as significant change of their optical properties and the preservation of metastable states for tens of years open wide perspectives for the application of these materials to fully optical devices [1], including high-speed optical memory [2]. Here we study optical properties of the Ge2Sb2Te5 (GST225) thin films integrated with on-chip silicon nitride O-ring resonator. The rib waveguide of the resonator was formed the first stage of e-beam lithography and subsequent reactive-ion etching. We used the second stage of e-beam lithography combining with lift-off method for the formation of GST225 active region on the resonator ring surface. The amorphous GST225 thin films were prepared by magnetron sputtering, and were capped by thin silicon oxide on their tops. The length of the GST225 active region varied from 0.1 to 20 μ m. Crystallization of amorphous thin films was carried out at the temperature of 400 °C for 30 minutes. Auger electron spectroscopy and transmission electron microscopy were used for studying composition and structure of investigated GST225thin films, respectively. It was observed that crystallization of amorphous GST225 film lead to a decrease of the optical power, transmitted through the waveguide. Comparison of the optical transmittance of O-ring resonators before and after the GST225 deposition allowed to identify the change in the Q-factor and the wavelength peak shift. This can be explained by the differences of the complex refractive indexes of GST225 thin films in the amorphous and crystalline states. From the measurement data, the GST225 effective refractive index was extracted depending on the ring waveguide width of the resonator for a telecommunication wavelength of 1550 nm.
Address
Corporate Author Thesis
Publisher Technical University of Moldova Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Poster Approved no
Call Number Serial 1281
Permanent link to this record
 

 
Author (down) Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Optical single-photon detection in micrometer-scale NbN bridges Type Journal Article
Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 9 Issue 6 Pages 064037 (1 to 13)
Keywords NbN SSPD, SNSPD
Abstract We demonstrate experimentally that single-photon detection can be achieved in micrometer-wide NbN bridges, with widths ranging from 0.53 to 5.15  μm and for photon wavelengths of 408 to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50% of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors, based on nanometer-scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modeling based on the theory of nonequilibrium superconductivity, including the vortex-assisted mechanism of initial dissipation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1303
Permanent link to this record
 

 
Author (down) Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords SSPD
Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1303 Approved no
Call Number Serial 1312
Permanent link to this record
 

 
Author (down) Korneeva, Y.; Vodolazov, D.; Florya, I.; Manova, N.; Smirnov, E.; Korneev, A.; Mikhailov, M.; Goltsman, G.; Klapwijk, T. M.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Single photon detection in micron scale NbN and α-MoSi superconducting strips Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 190 Issue Pages 04010 (1 to 2)
Keywords SSPD
Abstract We experimentally demonstrate the single photon detection in straight micrometer-wide NbN and α-MoSi bridges. Width of the bridges is 2 µm, while the wavelength of the photon changes from 408 to 1550 nm and critical current exceeds 50% of the depairing current. Obtained results offer the alternative route for design of detectors without resonator and meander structure and indirectly confirm vortex assisted mechanism of single photon detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1319
Permanent link to this record
 

 
Author (down) Korneeva, Y.; Sidorova, M.; Semenov, A.; Krasnosvobodtsev, S.; Mitsen, K.; Korneev, A.; Chulkova, G.; Goltsman, G.
Title Comparison of hot-spot formation in NbC and NbN single-photon detectors Type Journal Article
Year 2016 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 26 Issue 3 Pages 1-4
Keywords NbC, NbN SSPD, SNSPD
Abstract We report an experimental investigation of the hot-spot evolution in superconducting single-photon detectors made of disordered superconducting materials with different diffusivity and energy downconversion time values, i.e., 33-nm-thick NbN and 23-nm-thick NbC films. We have demonstrated that, in NbC film, only 405-nm photons produce sufficiently large hot spot to trigger a single-photon response. The dependence of detection efficiency on bias current for 405-nm photons in NbC is similar to that for 3400-nm photons in NbN. In NbC, large diffusivity and downconversion time result in 1-D critical current suppression profile compared with the usual 2-D profile in NbN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1348
Permanent link to this record
 

 
Author (down) Korneeva, Y.; Florya, I.; Vdovichev, S.; Moshkova, M.; Simonov, N.; Kaurova, N.; Korneev, A.; Goltsman, G.
Title Comparison of hot spot formation in nbn and mon thin superconducting films after photon absorption Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-4
Keywords MoNx SSPD
Abstract In superconducting single-photon detectors (SSPD), the efficiency of local suppression of superconductivity and hotspot formation is controlled by diffusivity and electron-phonon interaction time. Here, we selected a material, 3.6-nm-thick MoNx film, which features diffusivity close to those of NbN traditionally used for SSPD fabrication, but with electron-phonon interaction time an order of magnitude larger. In MoN ∞ detectors, we study the dependence of detection efficiency on bias current, photon energy, and strip width, and compare it with NbN SSPD. We observe nonlinear current-energy dependence in MoNx SSPD and more pronounced plateaus in dependences of detection efficiency on bias current, which we attribute to longer electron-phonon interaction time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1325
Permanent link to this record
 

 
Author (down) Korneeva, Y.; Florya, I.; Semenov, A.; Korneev, A.; Goltsman, G.
Title New generation of nanowire NbN superconducting single-photon detector for mid-infrared Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 21 Issue 3 Pages 323-326
Keywords SSPD
Abstract We present a break-through approach to mid-infrared single-photon detection based on nanowire NbN superconducting single-photon detectors (SSPD). Although SSPD became a mature technology for telecom wavelengths (1.3-1.55 μm) its further expansion to mid-infrared wavelength was hampered by low sensitivity above 2 μm. We managed to overcome this limit by reducing the nanowire width to 50 nm, while retaining high superconducting properties and connecting the wires in parallel to produce a voltage response of sufficient magnitude. The new device exhibits 10 times better quantum efficiency at 3.5 μm wavelength than the “standard” SSPD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 644
Permanent link to this record
 

 
Author (down) Korneeva, Y. P.; Mikhailov, M. Y.; Pershin, Y. P.; Manova, N. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Korneev, A. A.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Y.; Goltsman, G. N.
Title Superconducting single-photon detector made of MoSi film Type Journal Article
Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 27 Issue 9 Pages 095012
Keywords SSPD, SNSPD
Abstract We fabricated and characterized nanowire superconducting single-photon detectors made of 4 nm thick amorphous Mox Si1−x films. At 1.7 K the best devices exhibit a detection efficiency (DE) up to 18% at 1.2 $\mu {\rm m}$ wavelength of unpolarized light, a characteristic response time of about 6 ns and timing jitter of 120 ps. The DE was studied in wavelength range from 650 nm to 2500 nm. At wavelengths below 1200 nm these detectors reach their maximum DE limited by photon absorption in the thin MoSi film.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ korneeva2014superconducting Serial 1044
Permanent link to this record
 

 
Author (down) Korneev, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Pernice, W.; An, P.; Golikov, A.; Zubkova, E.; Goltsman, G.
Title Superconducting Single-Photon Detectors for Integrated Nanophotonics Circuits Type Conference Article
Year 2017 Publication 16th ISEC Abbreviated Journal 16th ISEC
Volume Issue Pages 1-3
Keywords SSPD, SNSPD
Abstract We present an overview of our recent achievements in integration of superconducting nanowire single-photon detectors SNSPD with dielectric optical waveguides. We are able to produce complex nanophotonics integrated circuits containing optical elements and photon detector on single chip thus producing a compact integrated platform for quantum optics applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 8314200 Serial 1200
Permanent link to this record
 

 
Author (down) Korneev, A.; Kovalyuk, V.; An, P.; Golikov, A.; Zubkova, E.; Ferrari, S.; Kahl, O.; Pernice, W.; Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Superconducting single-photon detector for integrated waveguide spectrometer Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 190 Issue Pages 04009
Keywords SSPD, SNSPD, Si3N4 waveguides, waveguide spectrometer
Abstract We present our recent achievements in the development of an on-chip spectrometer consisting of arrayed waveguide grating made of Si3N4 waveguides and NbN superconducting single-photon detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1199
Permanent link to this record
 

 
Author (down) Korneev, A.; Korneeva, Y.; Manova, N.; Larionov, P.; Divochiy, A.; Semenov, A.; Chulkova, G.; Vachtomin, Y.; Smirnov, K.; Goltsman, G.
Title Recent nanowire superconducting single-photon detector optimization for practical applications Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2201204 (1 to 4)
Keywords SSPD, SNSPD
Abstract In this paper, we present our approaches to the development of fiber-coupled superconducting single photon detectors with enhanced photon absorption. For such devices we have measured detection efficiency in wavelength range from 500 to 2000 nm. The best fiber coupled devices exhibit detection efficiency of 44.5% at 1310 nm wavelength and 35.5% at 1550 nm at 10 dark counts per second.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ KorneevIEEE2013 Serial 996
Permanent link to this record
 

 
Author (down) Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G.
Title NbN nanowire superconducting single-photon detector for mid-infrared Type Journal Article
Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia
Volume 36 Issue Pages 72-76
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum effciency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum effciency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1875-3892 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1382
Permanent link to this record
 

 
Author (down) Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G.
Title Spectral sensitivity of narrow strip NbN superconducting single-photon detector Type Conference Article
Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 8072 Issue Pages 80720G (1 to 9)
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon detector (SSPD) is patterned from 4-nm-thick NbN film deposited on sapphire substrate as a 100-nm-wide strip. Due to its high detection efficiency, low dark counts, and picosecond timing jitter SSPD has become a competitor to the InGaAs avalanche photodiodes at 1550 nm and longer wavelengths. Although the SSPD is operated at liquid helium temperature its efficient single-mode fibre coupling enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. In our strive to increase the detection efficiency at 1550 nm and longer wavelengths we developed and fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm. To increase the voltage response of the device we utilized cascade switching mechanism: we connected 50-nm-wide and 10-μm-long strips in parallel covering the area of 10 μmx10 μm. Absorption of a photon breaks the superconductivity in a strip leading to the bias current redistribution between other strips followed their cascade switching. As the total current of all the strips about is 1 mA by the order of magnitude the response voltage of such an SSPD is several times higher compared to the traditional meander-shaped SSPDs. In middle infrared (about 3 μm wavelength) these devices have the detection efficiency several times higher compared to the traditional SSPDs.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Fiurásek, J.; Prochazka, I.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III
Notes Approved no
Call Number Serial 1387
Permanent link to this record
 

 
Author (down) Korneev, A.; Korneeva, Y.; Florya, I.; Semenov, A.; Goltsman, G.
Title Photon switching statistics in multistrip superconducting single-photon detectors Type Journal Article
Year 2018 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 28 Issue 7 Pages 1-4
Keywords SSPD, SNSPD
Abstract We study photon count statistics in superconducting single-photon detectors consisting of up to 70 narrow superconducting strips connected in parallel. Using interarrival time analysis, we demonstrate that our samples are operated in the “arm-trigger” regime and require up to seven subsequently absorbed photons to form a resistive state in the whole sample. We also performed numerical simulation of the light and dark count rates versus detector bias current, which are in good agreement with the experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1304
Permanent link to this record
 

 
Author (down) Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G.
Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713828 (1 to 5)
Keywords PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared
Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.818079 Serial 1241
Permanent link to this record
 

 
Author (down) Korneev, A. A.; Korneeva, Y. P.; Mikhailov, M. Yu.; Pershin, Y. P.; Semenov, A. V.; Vodolazov, D. Yu.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Yu.; Goltsman, G. N.
Title Characterization of MoSi superconducting single-photon detectors in the magnetic field Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2200504 (1 to 4)
Keywords SSPD, SNSPD
Abstract We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ KorneevIEEE2015 Serial 991
Permanent link to this record
 

 
Author (down) Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N.
Title IR single-photon receiver based on ultrathin NbN superconducting film Type Journal Article
Year 2013 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 5 Pages
Keywords SSPD, SNSPD
Abstract We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 8 pages Approved no
Call Number RPLAB @ sasha @ korneevir Serial 1043
Permanent link to this record
 

 
Author (down) Korneev, A.; Finkel, M.; Maslennikov, S.; Korneeva, Yu.; Florya, I.; Tarkhov, M.; Elezov, M.; Ryabchun, S.; Tretyakov, I.; Isupova, A.; Voronov, B.; Goltsman, G.
Title Superconducting NbN terahertz detectors and infrared photon counters Type Journal Article
Year 2010 Publication Вестник НГУ. Серия: физ. Abbreviated Journal Вестник НГУ. Серия: физ.
Volume 5 Issue 4 Pages 68-72
Keywords HEB; HEB mixer
Abstract We present our recent achievements in the development of sensitive and ultrafast thin-film superconducting sensors: hot-electron bolometers (HEB), HEB-mixers for terahertz range and infrared single-photon counters. These sensors have already demonstrated a performance that makes them devices-of-choice for many terahertz and optical applications. Keywords: Hot electron bolometer mixers, infrared single-photon detectors, superconducting device fabrication, superconducting NbN films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1818-7994 ISBN Medium
Area Expedition Conference
Notes УДК 538.9 Approved no
Call Number RPLAB @ gujma @ Serial 708
Permanent link to this record
 

 
Author (down) Komrakova, S.; Kovalyuk, V.; An, P.; Golikov, A.; Rybin, M.; Obraztsova, E.; Goltsman, G.
Title Effective absorption coefficient of a graphene atop of silicon nitride nanophotonic circuit Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012135
Keywords silicon nitride O-ring resonator, ORR
Abstract In this paper, we demonstrate the results of a study of the optical absorption properties of graphene integrated with silicon nitride O-ring resonator. We fabricated an array of O-ring resonators with different graphene coverage area atop. By measuring the transmission spectra of nanophotonic devices with and without graphene, we calculated the effective absorption coefficient of the graphene on a rib silicon nitride waveguide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1177
Permanent link to this record
 

 
Author (down) Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G.
Title On-chip controlled placement of nanodiamonds with a nitrogen-vacancy color centers (NV) Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051046 (1 to 4)
Keywords nanodiamonds, NV-centers
Abstract Here we studied the fabrication technique of a kilopixel array of nanodiamonds with a nitrogen-vacancy color centers (NV) on top of the chip and measured the second-order correlation function deep, clearly demonstrated the presence of single-photon sources. The controlled position of nanodiamonds, determined from the measurement of second-order correlation fiction, was realize, as well as the yield of optimized technique equals 12.5% is shown.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1298
Permanent link to this record
 

 
Author (down) Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G.
Title CMOS compatible nanoantenna-nanodiamond integration Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012180
Keywords bull-eye antenna, hyperbolic metamaterials, NV-centers
Abstract Here we demonstrate CMOS compatible method to deterministically produce nanoantenna with nanodiamonds systems on example of bull-eye antenna on top of on hyperbolic metamaterials. We study the statistics of the placement of nanodiamonds and measure the fluorescence lifetime and the second-order correlation function of NV-centers inside nanodiamonds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1182
Permanent link to this record
 

 
Author (down) Kollberg, Erik L.; Gershenzon, E.; Goltsman, G.; Yngvesson, K. S.
Title Hot electron mixers, the potential competition Type Conference Article
Year 1992 Publication Proc. ESA Symp. on Photon Detectors for Space Instrumentation Abbreviated Journal Proc. ESA Symp. on Photon Detectors for Space Instrumentation
Volume Issue Pages 201-206
Keywords HEB mixers
Abstract There is an urgent need in radio astronomy for low noise heterodyne receivers for frequencies above about 500 GHz. It is not certain that mixers based on superconducting quasiparticle tunnelling (SIS mixers) may turn out to be the answer to this need. In order to try to find an alternative way for realizing low noise heterodyne receivers for submillimeter waves, so called hot electron bolometric effects for mixing are now being investigated. Two basically different approaches are tried, one based on semiconductors and one on superconductors. Both methods are briefly discussed in this overview paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ESA Symposium on Photon Detectors for Space Instrumentation
Notes Approved no
Call Number Serial 1667
Permanent link to this record
 

 
Author (down) Kawamura, J.; Hunter, T. R.; Tong, C. Y. E.; Blundell, R.; Papa, D. C.; Patt, F.; Peters, W.; Wilson, T.; Henkel, C.; Goltsman, G.; Gershenzon, E.
Title Ground-based terahertz CO spectroscopy towards Orion Type Journal Article
Year 2002 Publication A&A Abbreviated Journal A&A
Volume 394 Issue 1 Pages 271-274
Keywords HEB mixers, applications
Abstract Using a superconductive hot-electron bolometer heterodyne receiver on the 10-m Heinrich Hertz Telescope on Mount Graham, Arizona, we have obtained velocity-resolved 1.037 THz CO () spectra toward several positions along the Orion Molecular Cloud (OMC-1) ridge. We confirm the general results of prior observations of high-J CO lines that show that the high temperature, , high density molecular gas, , is quite extended, found along a ~ region centered on BN/KL. However, our observations have significantly improved angular resolution, and with a beam size of we are able to spatially and kinematically discriminate the emission originating in the extended quiescent ridge from the very strong and broadened emission originating in the compact molecular outflow. The ridge emission very close to the BN/KL region appears to originate from two distinct clouds along the line of sight with and ≈ . The former component dominates the emission to the south of BN/KL and the latter to the north, with a turnover point coincident with or near BN/KL. Our evidence precludes a simple rotation of the inner ridge and lends support to a model in which there are multiple molecular clouds along the line of sight towards the Orion ridge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 322
Permanent link to this record
 

 
Author (down) Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, T.; Bustarret, E.
Title Relaxation of the resistive superconducting state in boron-doped diamond films Type Journal Article
Year 2016 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 93 Issue 6 Pages 064506
Keywords boron-doped diamond films, resistive superconducting state, relaxation time
Abstract We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5×1021cm−3 and a critical temperature of about 2K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T−2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1167
Permanent link to this record
 

 
Author (down) Kardakova, A.; Finkel, M.; Morozov, D.; Kovalyuk, V.; An, P.; Dunscombe, C.; Tarkhov, M.; Mauskopf, P.; Klapwijk, T.M.; Goltsman, G.
Title The electron-phonon relaxation time in thin superconducting titanium nitride films Type Journal Article
Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 25 Pages 252602 (1 to 4)
Keywords disordered TiN films, electron-phonon relaxation time
Abstract We report on the direct measurement of the electron-phonon relaxation time, τeph, in disordered TiN films. Measured values of τeph are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T−3 temperature dependence. The electronic density of states at the Fermi level N0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.

The work was supported by the Ministry of Education and Science of the Russian Federation, Contract No. 14.B25.31.0007 and by the RFBR Grant No. 13-02-91159.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 941
Permanent link to this record
 

 
Author (down) Kardakova, A. I.; Coumou, P. C. J. J.; Finkel, M. I.; Morozov, D. V.; An, P. P.; Goltsman, G. N.; Klapwijk, T. M.
Title Electron–phonon energy relaxation time in thin strongly disordered titanium nitride films Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 1-4
Keywords TiN MKID
Abstract We have measured the energy relaxation times from the electron bath to the phonon bath in strongly disordered TiN films grown by atomic layer deposition. The measured values of τ eph vary from 12 to 91 ns. Over a temperature range from 3.4 to 1.7 K, they follow T -3 temperature dependence, which are consistent with values of τ eph reported previously for sputtered TiN films. For the most disordered film, with an effective elastic mean free path of 0.35 nm, we find a faster relaxation and a stronger temperature dependence, which may be an additional indication of the influence of strong disorder on a superconductor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1296
Permanent link to this record
 

 
Author (down) Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits Type Journal Article
Year 2017 Publication Optica Abbreviated Journal Optica
Volume 4 Issue 5 Pages 557-562
Keywords Waveguide integrated superconducting single-photon detectors; Nanophotonics and photonic crystals; Quantum detectors; Spectrometers and spectroscopic instrumentation
Abstract The detection of individual photons by superconducting nanowire single-photon detectors is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multicolor imaging techniques, such as single-photon spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz at 80% of the devices' critical current. We demonstrate multidetector devices for telecommunication and visible wavelengths, and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength-division multiplexing on a chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1119
Permanent link to this record
 

 
Author (down) Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material Type Miscellaneous
Year 2017 Publication Optica Abbreviated Journal
Volume Issue Pages 1-9
Keywords Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution
Abstract This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers.
Address
Corporate Author Thesis
Publisher Osa Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Kahl:17 Serial 1218
Permanent link to this record
 

 
Author (down) Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
Year 2016 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 1-20
Keywords waiveguide SSPD, SNSPD, imaging
Abstract The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1334
Permanent link to this record
 

 
Author (down) Kahl, O.; Ferrari, S.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P.
Title Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths Type Journal Article
Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 5 Issue Pages 10941 (1 to 11)
Keywords optical waveguides; waveguide integrated SSPD; waveguide SSPD; nanophotonics
Abstract Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present efficiencies close to unity at 1550nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noiseequivalent powers in the 10–19W/Hz–1/2 range and the timing jitter is as low as 35ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:26061283; PMCID:PMC4462017 Approved no
Call Number RPLAB @ kovalyuk @ Serial 946
Permanent link to this record
 

 
Author (down) Jiang, L.; Li, J.; Zhang, W.; Yao, Q. J.; Lin, Z. L.; Shi, S. C.; Vachtomin, Y. B.; Antipov, S. V.; Svechnikov, S. I.; Voronov, B. M.; Goltsman, G. N.
Title Characterization of NbN HEB mixers cooled by a close-cycled 4 Kelvin refrigerator Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 511-513
Keywords NbN HEB mixers
Abstract It is quite beneficial to operate superconducting hot-electron-bolometer (HEB) mixers with a close-cycled 4 Kelvin refrigerator for real applications such as astronomy and atmospheric research. In this paper, a phononcooled NbN HEB mixer (quasioptical type) is thoroughly characterized under such a cooling circumstance. The effects of mechanical vibration, electrical interference, and temperature fluctuation of a two-stage Gifford-McMahon 4 Kelvin refrigerator upon the characteristics of the phononcooled NbN HEB mixer are investigated in particular. Detailed measurement results are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1469
Permanent link to this record
 

 
Author (down) Iomdina, E. N.; Seliverstov, S.; Sianosyan, A.; Teplyakova, K.; Rusova, A.; Goltsman, G.
Title The prospects of using the radiation for the assessment of corneal and scleral hydration Type Abstract
Year 2016 Publication Acta Ophthalmol. Abbreviated Journal Acta Ophthalmol.
Volume 94 Issue Pages
Keywords BWO, avalanche transit‐time diode, medicine, biology
Abstract Purpose

An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells – the cornea and the sclera. THz systems creating images in reflected beams are likely to become ideal instruments of noninvasive testing of corneal and scleral hydration degree as THz radiation is highly sensitive to water content. The paper aims at studying the transmittance and reflectance spectra of the cornea and the sclera of rabbit and human eyes, as well as those of the whole rabbit eye, in the frequency range of 0.13–0.32 THz.

Methods

The experiments were carried out on 3 corneas and 3 rabbit scleras, 2 whole rabbit eyes, and 3 human healthy adult scleras using a specially developed THz system based on reliable and easy‐to‐use continuous wave sources: a backward‐wave oscillator and an avalanche transit‐time diode.

Results

The transmittance spectra of the cornea and the sclera and the dependence of the reflection coefficient of these tissues in THz range on water percentage content were determined. Comparison of the rabbit cornea hydrated from 73.2% to 76.3% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration. The decrease of free water concentration by 1% leads to a drop of the reflectance coefficient by 13%. The parameters studied displayed noticeable differences between the sclera and the cornea of rabbits and between rabbit sclera and human sclera.

Conclusions

Preliminary results demonstrate that the proposed technique, based on continuous THz radiation, may be used to create a device for noninvasive testing of corneal and scleral hydration, which has good potential of wide‐scale practical application.

The work was supported by the Russian Foundation of Basic Research (grant No.15‐29‐03843)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755375X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1333
Permanent link to this record
 

 
Author (down) Iomdina, E. N.; Seliverstov, S. V.; Teplyakova, K. O.; Jani, E. V.; Pozdniakova, V. V.; Polyakova, O. N.; Goltsman, G. N.
Title Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification Type Journal Article
Year 2021 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 26 Issue 4 Pages
Keywords medicine; scheimpflug imaging; UVB; confocal microscopy; cornea; optical coherent tomography; rabbit eyes; terahertz radiation
Abstract SIGNIFICANCE: Water content plays a vital role in the normally functioning visual system; even a minor disruption in the water balance may be harmful. Today, no direct method exists for corneal hydration assessment, while it could be instrumental in early diagnosis and control of a variety of eye diseases. The use of terahertz (THz) radiation, which is highly sensitive to water content, appears to be very promising. AIM: To find out how THz scanning parameters of corneal tissue measured by an experimental setup, specially developed for in vivo contactless estimations of corneal reflectivity coefficient (RC), are related to pathological changes in the cornea caused by B-band ultraviolet (UVB) exposure. APPROACH: The setup was tested on rabbit eyes in vivo. Prior to the course of UVB irradiation and 1, 5, and 30 days after it, a series of examinations of the corneal state was made. At the same time points, corneal hydration was assessed by measuring RC. RESULTS: The obtained data confirmed the negative impact of UVB irradiation course on the intensity of tear production and on the corneal thickness and optical parameters. A significant (1.8 times) increase in RC on the 5th day after the irradiation course, followed by a slight decrease on the 30th day after it was revealed. The RC increase measured 5 days after the UVB irradiation course generally corresponded to the increase (by a factor of 1.3) of tear production. RC increase occurred with the corneal edema, which was manifested by corneal thickening (by 18.2% in the middle area and 17.6% in corneal periphery) and an increased volume of corneal tissue (by 17.6%). CONCLUSIONS: Our results demonstrate that the proposed approach can be used for in vivo contactless estimation of the reflectivity of rabbit cornea in the THz range and, thereby, of cornea hydration.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathema, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:33834684; PMCID:PMC8027227 Approved no
Call Number Serial 1258
Permanent link to this record
 

 
Author (down) Iomdina, E. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.; Goltsman, G. N.
Title Terahertz scanning for evaluation of corneal and scleral hydration Type Journal Article
Year 2018 Publication Sovremennye tehnologii v medicine Abbreviated Journal STM
Volume 10 Issue 4 Pages 143-149
Keywords BWO; Golay cell; medicine; cornea; sclera; THz radiation; corneal hydration; backward-wave oscillator; avalanche transit-time diode; IMPATT diode
Abstract The aim of the investigation was to study the prospects of using continuous THz scanning of the cornea and the sclera to determine water concentration in these tissues and on the basis of the obtained data to develop the experimental installation for monitoring corneal and scleral hydration degree.Materials and Methods. To evaluate corneal and scleral transmittance and reflectance spectra in the THz range, the developed experimental installations were used to study 3 rabbit corneas and 3 scleras, 2 whole rabbit eyes, and 3 human scleras. Besides, two rabbit eyes were studied in vivo prior to keratorefractive surgery as well as 10 and 21 days following the surgery (LASIK).Results. There have been created novel experimental installations enabling in vitro evaluation of frequency dependence of corneal and scleral transmittance coefficients and reflectance coefficients on water percentage in the THz range. Decrease in corneal water content by 1% was found to lead to reliably established decrease in the reflected signal by 13%. The reflectance spectrum of the whole rabbit eye was measured in the range of 0.13–0.32 THz. The study revealed the differences between the indices of rabbit cornea and sclera, as well as rabbit and human sclera. There was developed a laboratory model of the installation for in vivo evaluation of corneal and scleral hydration using THz radiation.Conclusion. The preliminary findings show that the proposed technique based on the use of continuous THz radiation can be employed to create a device for noninvasive control of corneal and scleral hydration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1315
Permanent link to this record
 

 
Author (down) Iomdina, E. N.; Goltsman, G. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.
Title Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range Type Journal Article
Year 2016 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 21 Issue 9 Pages 97002 (1 to 5)
Keywords BWO, IMPATT diode, Schottky diode, medicine, animals, cornea, physiology, humans, rabbits, sclera diagnostic imaging, physiology
Abstract An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.
Address Moscow State Pedagogical University, Department of Physics, 29 Malaya Pirogovskaya Street, Moscow 119435, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:27626901 Approved no
Call Number Serial 1335
Permanent link to this record
 

 
Author (down) Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Quantum photonic integrated circuits with waveguide integrated superconducting nanowire single-photon detectors Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 190 Issue Pages 02004 (1 to 2)
Keywords waveguide SSPD, SNSPD
Abstract We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1320
Permanent link to this record
 

 
Author (down) Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R.
Title Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5732 Issue Pages 520-529
Keywords NbN SSPD, SNSPD
Abstract We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Sensing and Nanophotonic Devices II
Notes Approved no
Call Number Serial 1478
Permanent link to this record
 

 
Author (down) Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R.
Title Nano-structured superconducting single-photon detectors Type Journal Article
Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal
Volume 520 Issue 1-3 Pages 527-529
Keywords NbN SSPD, SNSPD
Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1495
Permanent link to this record
 

 
Author (down) Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G.
Title Ultrafast superconducting single-photon detector Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 15 Pages 1670-1680
Keywords SSPD, SNSPD
Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 607
Permanent link to this record
 

 
Author (down) Goltsman, G. N.; Shcherbatenko, M. L.; Lobanov, Y. V.; Kovalyuk, V. V.; Kahl, O.; Ferrari, S.; Korneev, A.; Pernice, W. H. P.
Title Superconducting nanowire single photon detector for coherent detection of weak optical signals Type Abstract
Year 2016 Publication LPHYS'16 Abbreviated Journal LPHYS'16
Volume Issue Pages 1-2
Keywords SSPD, SNSPD
Abstract Traditionally, photon detectors are operated in a direct detection mode counting incident photonswith a known quantum efficiency. This procedure allows one to detect weak sources of radiation but allthe information about its frequency is limited by the optical filtering/resonating structures used which arenot as precise as would be required for some practical applications. In this work we propose heterodynereceiver based on a photon counting mixer which would combine excellent sensitivity of a photon countingdetector and excellent spectral resolution given by the heterodyne technique. At present, Superconducting-Nanowire-Single-Photon-Detectors (SNSPDs) [1] are widely used in a variety of applications providing thebest possible combination of the sensitivity and speed. SNSPDs demonstrate lack of drawbacks like highdark count rate or autopulsing, which are common for traditional semiconductor-based photon detectors,such as avalanche photon diodes.In our study we have investigated SNSPD operated as a photon counting mixer. To fully understandits behavior in such a regime, we have utilized experimental setup based on a couple of distributedfeedback lasers irradiating at 1.5 micrometers, one of which is being the Local Oscillator (LO) and theother mimics the test signal [2]. The SNSPD was operated in the current mode and the bias currentwas slightly below of the critical current. Advantageously, we have found that LO power needed for anoptimal mixing is of the order of hundreds of femtowatts to a few picowatts, which is promising for manypractical applications, such as receiver matrices [3]. With use of the two lasers, one can observe thevoltage pulses produced by the detected photons, and the time distribution of the pulses reproduces thefrequency difference between the lasers, forming power response at the intermediate frequency which canbe captured by either an oscilloscope (an analysis of the pulse statistics is needed) or by an RF spectrumanalyzer. Photon-counting nature of the detector ensures quantum-limited sensitivity with respect to theoptical coupling achieved. In addition to the chip SNSPD with normal incidence coupling, we use thedetectors with a travelling wave geometry design [4]. In this case a NbN nanowire is placed on the topof a Si3N4 nanophotonic waveguide, thus increasing the efficient interaction length. For this reason it ispossible to achieve almost complete absorption of photons and reduce the detector footprint. This reducesthe noise of the device together with the expansion of the bandwidth. Integrated device scheme allowsus to measure the optical losses with high accuracy. Our approach is fully scalable and, along with alarge number of devices integrated on a single chip can be adapted to the mid and far IR ranges wherephoton-counting measurement may be beneficial as well [5].Acknowledgements: This work was supported in part by the Ministry of Education and Science of theRussian Federation, contract No. 14.B25.31.0007 and by RFBR grant No. 16-32-00465.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1220
Permanent link to this record
 

 
Author (down) Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title New generation of superconducting nanowire single-photon detectors Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 01006 (1 to 2)
Keywords SSPD, SNSPD
Abstract We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs) that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1349
Permanent link to this record
 

 
Author (down) Goltsman, G. N.; Maliavkin, A. V.; Ptitsina, N. G.; Selevko, A. G.
Title Magnetic exciton spectroscopy in uniaxially compressed Ge at submillimeter waves Type Conference Article
Year 1986 Publication Izv. Akad. Nauk SSSR, Seriya Fizicheskaya Abbreviated Journal Izv. Akad. Nauk SSSR, Seriya Fizicheskaya
Volume 50 Issue Pages 280-281
Keywords Ge, axial compression loads, excitons, germanium, magnetic spectroscopy, submillimeter waves, Zeeman effect
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0367-6755 ISBN Medium
Area Expedition Conference 3rd Vsesoiuznyi Seminar po Opticheskomu Detektirovaniiu Magnitnykh Rezonansov v Tverdykh Telakh, Kiev, Ukrainian SSR, May 1985
Notes Approved no
Call Number Serial 1708
Permanent link to this record
 

 
Author (down) Goltsman, G. N.; Korneev, A. A.; Finkel, M. I.; Divochiy, A. V.; Florya, I. N.; Korneeva, Y. P.; Tarkhov, M. A.; Ryabchun, S. A.; Tretyakov, I. V.; Maslennikov, S. N.; Kaurova, N. S.; Chulkova, G. M.; Voronov, B. M.
Title Superconducting hot-electron bolometer as THz mixer, direct detector and IR single-photon counter Type Abstract
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal
Volume Issue Pages 1-1
Keywords SSPD, SNSPD, HEB
Abstract We present a new generation of superconducting single-photon detectors (SSPDs) and hot-electron superconducting sensors with record characteristic for many terahertz and optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-2027 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ goltsman2010superconducting Serial 1028
Permanent link to this record
 

 
Author (down) Goltsman, G. N.
Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7236 Issue Pages 72360D (1 to 11)
Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films
Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1403
Permanent link to this record
 

 
Author (down) Goltsman, G. N.
Title Submillimeter superconducting receivers for astronomy, atmospheric studies and other applications Type Abstract
Year 2006 Publication 31nd IRMW / 14th ICTE Abbreviated Journal 31nd IRMW / 14th ICTE
Volume Issue Pages 177
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics
Notes Approved no
Call Number Serial 1443
Permanent link to this record
 

 
Author (down) Goltsman, G.
Title Quantum-photonic integrated circuits Type Conference Article
Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO
Volume Issue Pages 22-23
Keywords WSSPD, waveguide SSPD, SNSPD, quantum optics, integrated optics, superconducting nanowire single-photon detector
Abstract We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1287
Permanent link to this record
 

 
Author (down) Goltsman, G.
Title Superconducting thin film as infrared heterodyne and direct detectors Type Conference Article
Year 2017 Publication 16th ISEC Abbreviated Journal 16th ISEC
Volume Issue Pages 1-3
Keywords optical waveguide SSPD, SNSPD
Abstract We present our recent achievements in the development of superconducting nanowire single-photon detectors (SNSPDs) integrated with optical waveguides on a chip. We demonstrate both single-photon counting with up to 90% on-chip-quantum-efficiency (OCDE), and the heterodyne mixing with a close to the quantum limit sensitivity at the telecommunication wavelength using single device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 8314188 Serial 1323
Permanent link to this record
 

 
Author (down) Goltsman, G.
Title Superconducting NbN hot-electron bolometer mixer, direct detector and single-photon counter: from devices to systems Type Report
Year 2009 Publication 2-nd Int. Conf. EUROFLUX Abbreviated Journal 2-nd Int. Conf. EUROFLUX
Volume Issue Pages
Keywords HEB, SSPD, SNSPD
Abstract
Address Avignon, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Provided by the SAO/NASA Astrophysics Data System Approved no
Call Number Serial 1398
Permanent link to this record
 

 
Author (down) Goltsman, G.
Title Simple method for stabilizing power of submillimetric spectrometer Type Journal Article
Year 1972 Publication Pribory i Tekhnika Eksperimenta Abbreviated Journal Pribory i Tekhnika Eksperimenta
Volume Issue 1 Pages 136
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Mezhdunarodnaya Kniga 39 Dimitrova Ul., Moscow, 113095, Russia Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1738
Permanent link to this record
 

 
Author (down) Golikov, A.; Kovalyuk, V.; An, P.; Zubkova, E.; Ferrari, S.; Pernice, W.; Korneev, A.; Goltsman, G.
Title Silicon nitride nanophotonic circuit for on-chip spontaneous four-wave mixing Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051051
Keywords O-ring resonator
Abstract Here we present an integrated nanophotonic circuit for on-chip spontaneous four-wave mixing. The fabricated device includes an O-ring resonator, a Bragg noch-filter as well as a nine-channel arrayed waveguide gratings (AWG) operated in the C-band wavelength range (1550 nm). The measured optical losses of the device (-6.8 dB) as well as a high Q-factor (> 1.2×105) shows a good potential for realizing the spontaneous four-wave mixing on the silicon nitride chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1193
Permanent link to this record
 

 
Author (down) Glejm, A. V.; Anisimov, A. A.; Asnis, L. N.; Vakhtomin, Yu. B.; Divochiy, A. V.; Egorov, V. I.; Kovalyuk, V. V.; Korneev, A. A.; Kynev, S. M.; Nazarov, Yu. V.; Ozhegov, R. V.; Rupasov, A. V.; Smirnov, K. V.; Smirnov, M. A.; Goltsman, G. N.; Kozlov, S. A.
Title Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s Type Journal Article
Year 2014 Publication Bulletin of the Russian Academy of Sciences. Physics Abbreviated Journal
Volume 78 Issue 3 Pages 171-175
Keywords SSPD, SNSPD, applications
Abstract An experimental demonstration of a subcarrier-wave quantum cryptography system with superconducting single-photon detectors (SSPDs) that distributes a secure key in a single-mode fiber at distance of 25 km with a bit rate of 800 kbit/s, a distance of 100 km with a bit rate of 19 kbit/s, and a distance of 200 km with a bit rate of 0.18 kbit/s is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-8738 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 940
Permanent link to this record
 

 
Author (down) Gershenzon, Ye. M.; Goltsman, G. N.; Yelantyev, A. I.; Petrova, Ye. B.; Ptitsina, N. G.; Filatov, V. S.
Title Lecture demonstrations of properties of superconductors and liquid helium Type Journal Article
Year 1987 Publication USSR Rept Phys. Math. JPRS UPM Abbreviated Journal USSR Rept Phys. Math. JPRS UPM
Volume 24 Issue 7 Pages 51
Keywords demonstrations, lections
Abstract New demonstrations for low temperature physics courses are described. Two transparent Dewar vacuum flasks fitting one inside the other with the external flask for nitrogen and the internal flask for helium are used. The helium temperature can be regulated in the 4.2 to 1.6 K range and the effects of reducing helium to the superfluid state at 2.17 K can be shown: boiling abruptly stops and superfluid flow appears. In order to show the electric and magnetic characteristics of superconductivity, a superconducting NbTi solenoid containing nonsuperconducting wire and germanium and superconducting Nb materials with different critical temperatures is placed in the helium refrigerant vessel. The fall of the resistance at the critical temperatures can be shown. In order to show magnetic field and superconductive current flow properties a shunt of superconductive material is connected in parallel to the coil and is enclosed in a teflon container with a heater which can vary its temperature. When it is heated and not superconductive, magnetic field effects can be demonstrated and when it is unheated and superconducting a continuous current can be demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1704
Permanent link to this record
 

 
Author (down) Gershenzon, E.; Goltsman, G.; Orlov, L.; Ptitsina, N.
Title Population of excited-states of small admixtures in germanium Type Conference Article
Year 1978 Publication Izv. Akad. Nauk SSSR, Seriya Fizicheskaya Abbreviated Journal Izv. Akad. Nauk SSSR, Seriya Fizicheskaya
Volume 42 Issue 6 Pages 1154-1159
Keywords Ge, excited states, admixtures
Abstract
Address
Corporate Author Thesis
Publisher Mezhdunarodnaya Kniga 39 Dimitrova Ul., 113095 Moscow, Russia Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1723
Permanent link to this record
 

 
Author (down) Gershenzon, E.; Goltsman, G.; Elantev, A.; Kagane, M.
Title Energy-spectrum of small donors and acceptors in germanium and effect of magnetic-field on it Type Conference Article
Year 1978 Publication Izv. Akad. Nauk SSSR, Seriya Fizicheskaya Abbreviated Journal Izv. Akad. Nauk SSSR, Seriya Fizicheskaya
Volume 42 Issue 6 Pages 1142-1148
Keywords energy spectrum, Ge, magnetic field
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1722
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Goltsman, G.; Orlova, S.; Ptitsina, N.; Gurvich, Y.
Title Germanium hot-electron narrow-band detector Type Journal Article
Year 1971 Publication Sov. Radio Engineering And Electronic Physics Abbreviated Journal Sov. Radio Engineering And Electronic Physics
Volume 16 Issue 8 Pages 1346
Keywords Ge HEB detectors
Abstract
Address
Corporate Author Thesis
Publisher Scripps Clinic Res Foundation 476 Prospect St, La Jolla, Ca 92037 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1741
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Goltsman, G. N.; Ptitsyna, N. G.
Title Investigation of excited donor states in GaAs Type Journal Article
Year 1974 Publication Sov. Phys. Semicond. Abbreviated Journal Sov. Phys. Semicond.
Volume 7 Issue 10 Pages 1248-1250
Keywords GaAs, excited donor states
Abstract
Address
Corporate Author Thesis
Publisher Amer Inst Physics 1305 Walt Whitman Rd, Ste 300, Melville, Ny 11747-4501 Usa Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1733
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Goltsman, G. N.; Orlov, L.
Title Investigation of population and ionization of donor excited states in Ge Type Conference Article
Year 1976 Publication Physics of Semiconductors Abbreviated Journal Physics of Semiconductors
Volume Issue Pages 631-634
Keywords Ge, donor excited states
Abstract
Address Amsterdam
Corporate Author Thesis
Publisher North-Holland Publishing Co. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1732
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Goltsman, G. N.; Multanovskii, V. V.; Ptitsina, N. G.
Title Kinetics of submillimeter impurity and exciton photoconduction in Ge Type Journal Article
Year 1982 Publication Optics and Spectroscopy Abbreviated Journal Optics and Spectroscopy
Volume 52 Issue 4 Pages 454-455
Keywords Ge, exciton photoconduction
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1715
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Goltsman, G. N.
Title Zeeman effect in excited-states of donors in germanium Type Journal Article
Year 1972 Publication Sov. Phys. Semicond. Abbreviated Journal Sov. Phys. Semicond.
Volume 6 Issue 3 Pages 509
Keywords Ge, donors, Zeeman effect
Abstract
Address
Corporate Author Thesis
Publisher Amer Inst Physics 1305 Walt Whitman Rd, Ste 300, Melville, Ny 11747-4501 Usa Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1737
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Gogidze, I. G.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Picosecond response on optical-range emission in thin YBaCuO films Type Journal Article
Year 1991 Publication Pisma v Zhurnal Tekhnicheskoi Fiziki Abbreviated Journal Pisma v Zhurnal Tekhnicheskoi Fiziki
Volume 17 Issue 22 Pages 6-10
Keywords YBCO HTS detectors
Abstract Целью настоящей работы является целенаправленный поиск пико-секундного отклика на оптическое излучение выяснение оптималь­ных условий его наблюдения, а также сравнение характеристик не­равновесных эффектов в оптическом и субмиллиметровом диапазонах.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1684
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Gershenson, M. E.; Goltsman, G. N.; Lyulkin, A. M.; Semenov, A. D.; Sergeev, A. V.
Title Limiting characteristics of fast-response superconducting bolometers Type Journal Article
Year 1989 Publication Zhurnal Tekhnicheskoi Fiziki Abbreviated Journal Zhurnal Tekhnicheskoi Fiziki
Volume 59 Issue 2 Pages 11-120
Keywords HEB
Abstract Теоретически и экспериментально исследовано физическое ограничение быстродействия сверхпроводящего болометра. Показано, что минимальная постоянная времени реализуется в условиях электронного разогрева и определяется процессом неупругого электрон-фонон-ного взаимодействия. Сформулированы требования к конструкции «электронного болометра» для достижения предельной чувствительности. Проведено сравнение характеристик электрон­ного болометра и обычных болометров различных типов.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1696
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Gershenson, M. E.; Goltsman, G. N.; Karasik, B. S.; Lyulkin, A. M.; Semenov, A. D.
Title Fast-response superconducting electron bolometer Type Journal Article
Year 1989 Publication Pisma v Zhurnal Tekhnicheskoi Fiziki Abbreviated Journal Pisma v Zhurnal Tekhnicheskoi Fiziki
Volume 15 Issue 3 Pages 88-92
Keywords Nb HEB
Abstract The general design, operation, and performance characteristics of fast-response electronic bolometers using a thin superconducting Nb film on a leucosapphire substrate are briefly reviewed. The volt-watt sensitivity of the bolometrs is 2,000-200,000 V/W, the operating temperature is 1.6 K, and the time constant is 4-4.5 ns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1694
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Limiting characteristic of fast superconducting bolometers Type Journal Article
Year 1989 Publication Sov. Phys.-Tech. Phys. Abbreviated Journal Sov. Phys.-Tech. Phys.
Volume 34 Issue Pages 195-199
Keywords HEB
Abstract Теоретически и экспериментально исследовано физическое ограничение быстродействия сверхпроводящего болометра. Показано, что минимальная постоянная времени реализуется в условиях электронного разогрева и определяется процессом неупругого электрон-фонон- ного взаимодействия. Сформулированы требования кконструкции «электронного болометра» для достижения предельной чувствительности. Проведено сравнение характеристик электронного болометра и обычных болометров различных типов.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes О предельных характеристиках быстродействующих серхпроводниковых болометров Approved no
Call Number Serial 237
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Wide-band highspeed Nb and YBaCuO detectors Type Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 2836-2839
Keywords YBCO, HTS, Nb detectors
Abstract The physical limitations on the response time and the nature of nonequilibrium detection of radiation were investigated for Nb and YBCO film in a wide spectral range from millimeter to near-infrared wavelengths. In the case of ideal heat removal from the film, the detection mechanism is connected with an electron heating effect which is not selective over a wide spectral interval. For Nb, the dependence of the response time on the electron mean free path l and temperature T is tau varies as T/sup -2/l/sup -1/. The values of detectivity D* and tau are 3*10/sup 11/ W/sup -1/ Hz/sup 1/2/ cm and 5*10/sup -9/ s at T=1.6 K, respectively. For YBCO film the tau value of 1-2 ps at T=77 K was obtained; the NEP value of 3*10/sup -11/ W-Hz/sup -1/2/ can be obtained at T=77 K in the case of the optimal film matching to the radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9464 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 239
Permanent link to this record
 

 
Author (down) Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Lulkin, A.; Semenov, A. D.; Sergeev, A. V.
Title Electron-phonon interaction in ultrathin Nb films Type Journal Article
Year 1990 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 70 Issue 3 Pages 505-511
Keywords Nb films
Abstract A study was made of the heating of electrons in normal resistive states of superconducting thin Nb films. The directly determined relaxation time of the resistance of a sample and the rise of the electron temperature were used to find the electron-phonon interaction time rep,, The dependence of rep, on the mean free path of electrons re,, a 1-'demonstrated, in agreement with the theoretical predictions, that the contribution of the inelastic scattering of electrons by impurities to the energy relaxation process decreased at low temperatures and the observed temperature dependence rep, a T 2 was due to a modification of the phonon spectrum in thin fllms.

1. Much new information on the electron-phonon interaction time?;,, in thin films of normal metals and superconductors has been published recently. This information has been obtained mainly as a result of two types of measurement. One includes experiments on weak electron localization investigated by the method of quantum interference corrections to the conductivity of disordered conductors, which can be used to find the relaxation time T, of the phase of the electron wave function. In the absence of the scattering of electrons by paramagnetic impurities the relaxation time T, is associated with the most effective process of energy relaxation: T;= TL+ rep;, where T,, is the electronelectron relaxation time. At low temperatures, when the dependence T; a T is exhibited by thin disordered films, the dominant channel is that of the electron-electron relaxation and there is a lower limit to the temperature range in which rep, can be investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 241
Permanent link to this record
 

 
Author (down) Gayduchenko, I.; Xu, S. G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A. K.; Fedorov, G.; Svintsov, D.; Bandurin, D. A.
Title Tunnel field-effect transistors for sensitive terahertz detection Type Journal Article
Year 2021 Publication Nat. Commun. Abbreviated Journal Nat. Commun.
Volume 12 Issue 1 Pages 543
Keywords field-effect transistors, bilayer graphene, BLG
Abstract The rectification of electromagnetic waves to direct currents is a crucial process for energy harvesting, beyond-5G wireless communications, ultra-fast science, and observational astronomy. As the radiation frequency is raised to the sub-terahertz (THz) domain, ac-to-dc conversion by conventional electronics becomes challenging and requires alternative rectification protocols. Here, we address this challenge by tunnel field-effect transistors made of bilayer graphene (BLG). Taking advantage of BLG's electrically tunable band structure, we create a lateral tunnel junction and couple it to an antenna exposed to THz radiation. The incoming radiation is then down-converted by the tunnel junction nonlinearity, resulting in high responsivity (>4 kV/W) and low-noise (0.2 pW/[Formula: see text]) detection. We demonstrate how switching from intraband Ohmic to interband tunneling regime can raise detectors' responsivity by few orders of magnitude, in agreement with the developed theory. Our work demonstrates a potential application of tunnel transistors for THz detection and reveals BLG as a promising platform therefor.
Address Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. bandurin@mit.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes PMID:33483488; PMCID:PMC7822863 Approved no
Call Number Serial 1261
Permanent link to this record
 

 
Author (down) Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.
Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 118 Issue 19 Pages 194303
Keywords terahertz detectors, asymmetric carbon nanotubes, CNT
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1169
Permanent link to this record
 

 
Author (down) Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Towards to the development of THz detectors based on carbon nanostructures Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1092 Issue Pages 012039 (1 to 4)
Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1302
Permanent link to this record
 

 
Author (down) Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E.
Title The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
Year 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.
Volume 5 Issue 13 Pages 27301-27306
Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor
Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7853 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1316
Permanent link to this record
 

 
Author (down) Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.
Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 741 Issue Pages 012143 (1 to 6)
Keywords carbon nanotubes, CNT
Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1336
Permanent link to this record
 

 
Author (down) Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Yu Kuntsevich, A.; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.
Title Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices Type Journal Article
Year 2018 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 29 Issue 24 Pages 245204 (1 to 8)
Keywords single layer graphene, graphene nanoribbons
Abstract We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.
Address Physics Department, Moscow State University of Education, Moscow 119991, Russia. National Research Center 'Kurchatov Institute', 123182, Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:29553479 Approved no
Call Number Serial 1308
Permanent link to this record
 

 
Author (down) Galin, M. A.; Klushin, A. M.; Kurin, V. V.; Seliverstov, S. V.; Finkel, M. I.; Goltsman, G. N.; Müller, F.; Scheller, T.; Semenov, A. D.
Title Towards local oscillators based on arrays of niobium Josephson junctions Type Journal Article
Year 2015 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 28 Issue 5 Pages 055002 (1 to 7)
Keywords Josephson junction local oscillators, JJ LO
Abstract Various applications in the field of terahertz technology are in urgent need of compact, wide-tunable solid-state continuous wave radiation sources with a moderate power. However, satisfactory solutions for the THz frequency range are scarce yet. Here we report on coherent radiation from a large planar array of Josephson junctions (JJs) in the frequency range between 0.1 and 0.3 THz. The external resonator providing the synchronization of JJ array is identified as a straight fragment of a single-strip-line containing the junctions themselves. We demonstrate a prototype of the quasioptical heterodyne receiver with the JJ array as a local oscillator and a hot-electron bolometer mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1347
Permanent link to this record
 

 
Author (down) Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10004 (1 to 2)
Keywords SSPD, SNSPD
Abstract We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1351
Permanent link to this record
 

 
Author (down) Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N.
Title Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
Year 2018 Publication Low Temp. Phys. Abbreviated Journal Low Temp. Phys.
Volume 44 Issue 3 Pages 221-225
Keywords WSi SSPD, SNSPD
Abstract Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-777X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1310
Permanent link to this record
 

 
Author (down) Ferrari, S.; Kahl, O.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P.
Title Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires Type Journal Article
Year 2015 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 106 Issue 15 Pages 151101 (1 to 5)
Keywords SSPD, SNSPD
Abstract We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

W. H. P. Pernice acknowledges support by the DFG Grant Nos. PE 1832/1-1 and PE 1832/1-2 and the Helmholtz society through Grant No. HIRG-0005. The Ph.D. education of O. Kahl is embedded in the Karlsruhe School of Optics and Photonics (KSOP). G. N. Goltsman acknowledges support by Russian Federation President Grant HШ-1918.2014.2 and Ministry of Education and Science of the Russian Federation Contract No.: RFMEFI58614X0007. A. Korneev acknowledges support by Statement Task No. 3.1846.2014/k. V. Kovalyuk acknowledges support by Statement Task No. 2327. We also acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A6.4. We thank S. Kühn and S. Diewald for the help with device fabrication as well as B. Voronov and A. Shishkin for help with NbN thin film deposition and A. Semenov for helpful discussion about the detection mechanism of nanowire SSPD's.

The authors declare no competing financial interests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1211
Permanent link to this record
 

 
Author (down) Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Goltsman, G.
Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-THz radiation Type Abstract
Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 71
Keywords carbon nanotubes, CNT
Abstract This work reports on the voltage response of asymmetric carbon nanotube devices to sub-THz radiation at the frequency of 140 GHz. The devices contain CNT’s, which are over their length partially suspended and partially Van der Waals bonded to a SiO 2 substrate, causing a difference in thermal contact. Different heat sinking of CNTs by source and drain gives rise to temperature gradient and consequent thermoelectric power (TEP) as such a device is exposed to the sub-THz radiation. Sign of the DC signal, its power and gate voltage dependence observed at room temperature are consistent with this scenario. At liquid helium temperature the observed response is more complex. DC voltage signal of an opposite sign is observed in a narrow range of gate voltages at low temperatures and under low radiation power. We argue that this may indicate a true photovoltaic response from small gap (less than 10meV) CNT’s, an effect never reported before. While it is not clear if the observed effects can be used to develop efficient THz detectors we note that the responsivity of our devices exceeds that of CNT based devices in microwave or THz range reported before at room temperature. Besides at 4.2 K notable increase of the sample conductance (at least four-fold) is observed. Our recent results with asymmetric carbon nanotube devices response to THz radiation (2.5 THz) will also be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1361
Permanent link to this record
 

 
Author (down) Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G.
Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 18 Pages 181121 (1 to 5)
Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate
Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1171
Permanent link to this record
 

 
Author (down) Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Graphene-based lateral Schottky diodes for detecting terahertz radiation Type Conference Article
Year 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V
Volume 10680 Issue Pages 30-39
Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.2307020 Serial 1306
Permanent link to this record
 

 
Author (down) Fedorov, G.; Gayduchenko, I.; Titova, N.; Gazaliev, A.; Moskotin, M.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Carbon nanotube based schottky diodes as uncooled terahertz radiation detectors Type Journal Article
Year 2018 Publication Phys. Status Solidi B Abbreviated Journal Phys. Status Solidi B
Volume 255 Issue 1 Pages 1700227 (1 to 6)
Keywords carbon nanotube schottky diodes, CNT
Abstract Despite the intensive development of the terahertz technologies in the last decade, there is still a shortage of efficient room‐temperature radiation detectors. Carbon nanotubes (CNTs) are considered as a very promising material possessing many of the features peculiar for graphene (suppression of backscattering, high mobility, etc.) combined with a bandgap in the carrier spectrum. In this paper, we investigate the possibility to incorporate individual CNTs into devices that are similar to Schottky diodes. The latter is currently used to detect radiation with a frequency up to 50 GHz. We report results obtained with semiconducting (bandgap of about 0.5 eV) and quasi‐metallic (bandgap of few meV) single‐walled carbon nanotubes (SWNTs). Semiconducting CNTs show better performance up to 300 GHz with responsivity up to 100 V W−1, while quasi‐metallic CNTs are shown to operate up to 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1321
Permanent link to this record
 

 
Author (down) Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10003 (1 to 2)
Keywords graphene field-effect transistor, FET
Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1350
Permanent link to this record
 

 
Author (down) Elmanova, A.; Elmanov, I.; Komrakova, S.; Golikov, A.; Javadzade, J.; Vorobyev, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A.
Title Integration of nanodiamonds with NV-centers on optical silicon nitride structures Type Conference Article
Year 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 220 Issue Pages 03013
Keywords nanodiamonds, NV-centers, Si3N4
Abstract In this work we had developed optical structures from silicon nitride for further integration of the nanodiamonds containing NV-centers with them. We have introduced method of the nanodiamonds solution application on the substrates. The work has practical meaning in nanophotonics sphere and in development of optical devices with single-photon sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1190
Permanent link to this record
 

 
Author (down) Elmanova, A.; An, P.; Kovalyuk, V.; Golikov, A.; Elmanov, I.; Goltsman, G.
Title Study of silicon nitride O-ring resonator for gas-sensing applications Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012124
Keywords silicon nitride O-ring resonator, ORR
Abstract In this work, we experimentally studied the influence of different gaseous surroundings on silicon nitride O-ring resonator transmission. We compared the obtained results with numerical calculations and theoretical analysis and found a good agreement between them. Our results have a great potential for gas sensing applications, where a compact footprint and high efficiency are desired simultaneously.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1176
Permanent link to this record
 

 
Author (down) Elmanov, I.; Sardi, F.; Xia, K.; Kornher, T.; Kovalyuk, V.; Prokhodtsov, A.; An, P.; Kuzin, A.; Elmanova, A.; Goltsman, G.; Kolesov, R.
Title Development of focusing grating couplers for lithium niobate on insulator platform Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012127
Keywords grating couplers, lithium niobat
Abstract In this paper, we fabricate and experimentally study focusing grating couplers for lithium niobate on an insulator photonic platform. The transmittance of a waveguide equipped with in- and out-couplers with respect to the grating period is measured with and without silicon dioxide cladding applied. Our results show the influence of silicon dioxide cladding on the efficiency and the central wavelength of grating couplers and can be used to improve grating coupling efficiency. Our study is supported by numerical simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1180
Permanent link to this record
 

 
Author (down) Elmanov, I.; Elmanova, A.; Komrakova, S.; Golikov, A.; Kaurova, N.; Kovalyuk, V.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A.
Title Method for determination of resists parameters for photonic – integrated circuits e-beam lithography on silicon nitride platform Type Conference Article
Year 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 220 Issue Pages 03012
Keywords e-beam lithography, Si3N4
Abstract In the work the thicknesses of the e-beam resists ZEP 520A and ma-N 2400 by using non-destructive method were measured, as well as recipe for the high ratio between the Si3N4 and the resists etching rate was determined. The work has a practical application for e-beam lithography of photonic-integrated circuits and nanophotonics devices based on silicon nitride platform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1189
Permanent link to this record
 

 
Author (down) Elezov, M.; Scherbatenko, M.; Sych, D.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A.
Title Towards the fiber-optic Kennedy quantum receiver Type Conference Article
Year 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 220 Issue Pages 03011 (1 to 2)
Keywords SSPD, SNSPD, Kennedy quantum receiver
Abstract We consider practical aspects of using standard fiber-optic elements and superconducting nanowire single-photon detectors for the development of a practical quantum receiver based on the Kennedy scheme. Our receiver allows to discriminate two phase-modulated coherent states of light at a wavelength of 1.5 microns in continuous mode with bit rate 200 Kbit/s and error rate about two times below the standard quantum limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1288
Permanent link to this record
 

 
Author (down) Elezov, M.; Ozhegov, R.; Goltsman, G.; Makarov, V.
Title Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution Type Journal Article
Year 2019 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 27 Issue 21 Pages 30979-30988
Keywords SSPD, SNSPD
Abstract We present an active anti-latching system for superconducting nanowire single-photon detectors. We experimentally test it against a bright-light attack, previously used to compromise security of quantum key distribution. Although our system detects continuous blinding, the detector is shown to be partially blindable and controllable by specially tailored sequences of bright pulses. Improvements to the countermeasure are suggested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:31684339 Approved no
Call Number Serial 1275
Permanent link to this record
 

 
Author (down) Elezov, M. S.; Shcherbatenko, M. L.; Sych, D. V.; Goltsman, G. N.
Title Development of control method for an optimal quantum receiver Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012126
Keywords Helstrom bound, SPD, single photon detector, below quantum limit
Abstract We propose a method for optimal displacement controlling of an optimal quantum receiver for registrations a binary coherent signal. An optimal receiver is able to distinguish between two phase-modulated states of a coherent signal. The optimal receiver controlling method can be used later in practice in various physical implementations of the optimal receiver.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1264
Permanent link to this record
 

 
Author (down) Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y.
Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
Year 2013 Publication J. Opt. Technol. Abbreviated Journal J. Opt. Technol.
Volume 80 Issue 7 Pages 435
Keywords SSPD, quantum efficiency
Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-9762 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1172
Permanent link to this record
 

 
Author (down) Elezov, M. S.; Scherbatenko, M. L.; Sych, D. V.; Goltsman, G. N.
Title Active and passive phase stabilization for the all-fiber Michelson interferometer Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051014 (1 to 5)
Keywords Michelson interferometer, phase stabilization
Abstract We put forward two methods for phase stabilization in the all-fiber Michelson interferometer. To perform passive phase stabilization, we use a heat bath for all fibers and electro-optical components, and put the interferometer in a hermetic case. To perform active phase stabilization, we monitor output power of the interferometer and develop an electronic feedback control. The phase stabilization methods enable stable interference pattern for several minutes, and can be helpful for the development of the optimal quantum receiver for coherent signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1299
Permanent link to this record
 

 
Author (down) Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Countermeasures against blinding attack on superconducting nanowire detectors for QKD Type Conference Article
Year 2015 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 103 Issue Pages 10002 (1 to 2)
Keywords SSPD, SNSPD, QKD
Abstract Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1352
Permanent link to this record