|   | 
Details
   web
Records
Author (down) Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
Title Hacking commercial quantum cryptography systems by tailored bright illumination Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue 10 Pages 686 - 689
Keywords quantum cryptography, hacking, QKD, APD
Abstract The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 657
Permanent link to this record
 

 
Author (down) Lupascu, Adrian
Title Nonlinear dynamics: Quantum pendula locked in Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 2 Pages 100-101
Keywords fromIPMRAS
Abstract A study of the autoresonant behaviour of a superconducting pendulum reveals that quantum fluctuations determine only the initial oscillator motion and not its subsequent dynamics. This could be important in the development of more efficient methods for reading solid-state qubits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 840
Permanent link to this record
 

 
Author (down) Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei
Title Experimental entanglement of six photons in graph states Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue 2 Pages 91-95
Keywords fromIPMRAS
Abstract Graph states-multipartite entangled states that can be represented by mathematical graphs-are important resources for quantum computation, quantum error correction, studies of multiparticle entanglement and fundamental tests of non-locality and decoherence. Here, we demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states. We have created two important examples of graph states, a six-photon Greenberger-Horne-Zeilinger state, the largest photonic Schrödinger cat so far, and a six-photon cluster state, a state-of-the-art `one-way quantum computer'. With small modifications, our method allows us, in principle, to create various further graph states, and therefore could open the way to experimental tests of, for example, quantum algorithms or loss- and fault-tolerant one-way quantum computation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 796
Permanent link to this record
 

 
Author (down) Li, Mo; Pernice, W. H. P.; Xiong, C.; Baehr-Jones, T.; Hochberg, M.; Tang, H. X.
Title Harnessing optical forces in integrated photonic circuits Type Journal Article
Year 2008 Publication Nature Abbreviated Journal Nature
Volume 456 Issue 7221 Pages 480-484
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 425
Permanent link to this record
 

 
Author (down) Kumar, Sushil; Wang I. Chan, Chun; Hu, Qing; Reno, John L.
Title A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue Pages
Keywords fromIPMRAS
Abstract Several competing technologies continue to advance the field of terahertz science; of particular importance has been the development of a terahertz semiconductor quantum cascade laser (QCL), which is arguably the only solid-state terahertz source with average optical power levels of much greater than a milliwatt. Terahertz QCLs are required to be cryogenically cooled and improvement of their temperature performance is the single most important research goal in the field. Thus far, their maximum operating temperature has been empirically limited to ~ω/kB, a largely inexplicable trend that has bred speculation that a room-temperature terahertz QCL may not be possible in materials used at present. Here, we argue that this behaviour is an indirect consequence of the resonant-tunnelling injection mechanism employed in all previously reported terahertz QCLs. We demonstrate a new scattering-assisted injection scheme to surpass this limit for a 1.8-THz QCL that operates up to ~1.9ω/kB (163 K). Peak optical power in excess of 2 mW was detected from the laser at 155 K. This development should make QCL technology attractive for applications below 2 THz, and initiate new design strategies for realizing a room-temperature terahertz semiconductor laser.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 836
Permanent link to this record
 

 
Author (down) Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing; Reno, John L.
Title A 1.8-THz quantum cascade laser operating significantly above the temperature of hw/k Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal
Volume 7 Issue Pages 166-171
Keywords QCL, 2 mW at 155 K and 1.8 THz
Abstract Several competing technologies continue to advance the field of terahertz science; of particular importance has been the development of a terahertz semiconductor quantum cascade laser (QCL), which is arguably the only solid-state terahertz source with average optical power levels of much greater than a milliwatt. Terahertz QCLs are required to be cryogenically cooled and improvement of their temperature performance is the single most important research goal in the field. Thus far, their maximum operating temperature has been empirically limited to ~planckω/kB, a largely inexplicable trend that has bred speculation that a room-temperature terahertz QCL may not be possible in materials used at present. Here, we argue that this behaviour is an indirect consequence of the resonant-tunnelling injection mechanism employed in all previously reported terahertz QCLs. We demonstrate a new scattering-assisted injection scheme to surpass this limit for a 1.8-THz QCL that operates up to ~1.9planckω/kB (163 K). Peak optical power in excess of 2 mW was detected from the laser at 155 K. This development should make QCL technology attractive for applications below 2 THz, and initiate new design strategies for realizing a room-temperature terahertz semiconductor laser.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 631
Permanent link to this record
 

 
Author (down) Kosako, Terukazu; Kadoya, Yutaka; Hofmann, Holger F.
Title Directional control of light by a nano-optical Yagi–Uda antenna Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue Pages 312 - 315
Keywords optical antennas
Abstract The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 747
Permanent link to this record
 

 
Author (down) Korotkov, Alexander N.
Title Entanglement preservation: The Sleeping Beauty approach Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue 2 Pages 107-108
Keywords fromIPMRAS
Abstract Two-qubit entanglement can be preserved by partially measuring the qubits to leave them in a 'lethargic' state. The original state is restored using quantum measurement reversal after the qubits have travelled through a decoherence channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 814
Permanent link to this record
 

 
Author (down) Konstantatos, Gerasimos; Sargent, Edward H.
Title Nanostructured materials for photon detection Type Journal Article
Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.
Volume 5 Issue 6 Pages 391–400
Keywords
Abstract The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SSPD Approved no
Call Number RPLAB @ gujma @ Serial 684
Permanent link to this record
 

 
Author (down) Kono, Junichiro
Title Coherent terahertz control Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue Pages 5-6
Keywords fromIPMRAS
Abstract Spin and charge terahertz excitations in solids are promising for implementing future technologies such as spintronics and quantum computation, but coherently controlling them has been a significant challenge. Researchers have now manipulated coherent spin waves in an antiferromagnet using the intense magnetic field of ultrashort terahertz pulses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 773
Permanent link to this record