toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hollenberg, Lloyd C. L. openurl 
  Title Quantum control: Through the quantum chicane Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue 2 Pages 113-114  
  Keywords fromIPMRAS  
  Abstract In quantum control there is an inherent tension between high fidelity requirements and the need for speed to avoid decoherence. A direct comparison of quantum control protocols at these two extremes indicates where the sweet spot may lie.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ gujma @ Serial 812  
Permanent link to this record
 

 
Author Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per openurl 
  Title Local probing of propagating acoustic waves in a gigahertz echo chamber Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue 4 Pages 338-343  
  Keywords fromIPMRAS  
  Abstract In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ gujma @ Serial 813  
Permanent link to this record
 

 
Author Korotkov, Alexander N. openurl 
  Title Entanglement preservation: The Sleeping Beauty approach Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue 2 Pages 107-108  
  Keywords fromIPMRAS  
  Abstract Two-qubit entanglement can be preserved by partially measuring the qubits to leave them in a 'lethargic' state. The original state is restored using quantum measurement reversal after the qubits have travelled through a decoherence channel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ gujma @ Serial 814  
Permanent link to this record
 

 
Author Kim, Yong-Su; Lee, Jong-Chan; Kwon, Osung; Kim, Yoon-Ho openurl 
  Title Protecting entanglement from decoherence using weak measurement and quantum measurement reversal Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue 2 Pages 117-120  
  Keywords fromIPMRAS  
  Abstract Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing, quantum cryptography, quantum teleportation and quantum metrology. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ gujma @ Serial 815  
Permanent link to this record
 

 
Author Bason, Mark G.; Viteau, Matthieu; Malossi, Nicola; Huillery, Paul; Arimondo, Ennio; Ciampini, Donatella; Fazio, Rosario; Giovannetti, Vittorio; Mannella, Riccardo; Morsch, Oliver openurl 
  Title High-fidelity quantum driving Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue 2 Pages 147-152  
  Keywords fromIPMRAS  
  Abstract Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose-Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter variations, making them useful for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ gujma @ Serial 816  
Permanent link to this record
 

 
Author Казаков, А. Ю.; Кардакова, А. И.; Селиверстов, С. В.; Горшков, К. Н.; Дивочий, А. В.; Финкель, М. И.; Корнеев, А. А.; Вахтомин, Ю. Б. url  openurl
  Title Возможность применения сверхпроводниковых материалов в качестве отражающего покрытия холодного зеркала телескопа субмиллиметрового диапазона Type Journal Article
  Year 2012 Publication Совр. проб. науки и обр. Abbreviated Journal Совр. проб. науки и обр.  
  Volume Issue 3 Pages 1-5  
  Keywords radio telescope, superconducting coating  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2070-7428 ISBN Medium  
  Area Expedition Conference  
  Notes УДК 520.272.2 Approved no  
  Call Number (up) RPLAB @ sasha @ казаковвозможность Serial 1030  
Permanent link to this record
 

 
Author Henrich, D.; Dorner,S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M. openurl 
  Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content Type Journal Article
  Year 2012 Publication Abbreviated Journal J. Appl. Phys.  
  Volume 112 Issue Pages  
  Keywords SSPD, SNSPD, magnetron sputtering, spectrum, NbN film, nitrogen concentration  
  Abstract The spectral detection efficiency and the dark count rate of superconducting nanowire

single-photon detectors (SNSPD) have been studied systematically on detectors made from thin

NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm

thick NbN films results in a decrease of the dark count rates more than two orders of magnitude

and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed

phenomena are explained by an improvement of uniformity of NbN films that has been confirmed

by a decrease of resistivity and an increase of the ratio of the measured critical current to the

depairing current. The latter factor is considered as the most crucial for both the cut-off

wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria

for material properties to optimize SNSPD in the infrared spectral region. VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4757625]
 
  Address  
  Corporate Author D. Henrich, S. Dorner, M. Hofherr, K. Il'in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, M. Siegel Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ seleznev @ Serial 877  
Permanent link to this record
 

 
Author Inderbitzin, K.; Engel, A.; Schilling, A.; Il'in, K.; Siegel, M. openurl 
  Title An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays Type Journal Article
  Year 2012 Publication Abbreviated Journal Appl. Phys. Lett.  
  Volume 101 Issue Pages  
  Keywords SSPD, SNSPD, x-ray, Nb  
  Abstract Although superconducting nanowire single-photon detectors (SNSPDs) are well studied regarding the

detection of infrared/optical photons and keV-molecules, no studies on continuous x-ray photon

counting by thick-film detectors have been reported so far. We fabricated a 100 nm thick niobium

x-ray SNSPD (an X-SNSPD) and studied its detection capability of photons with keV-energies in

continuous mode. The detector is capable to detect photons even at reduced bias currents of 0.4%,

which is in sharp contrast to optical thin-film SNSPDs. No dark counts were recorded in extended

measurement periods. Strikingly, the signal amplitude distribution depends significantly on the photon

energy spectrum.VC
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ seleznev @ Serial 878  
Permanent link to this record
 

 
Author D. Henrich, L. Rehm S. Dörner, M. Hofherr, K. Il'in, A. Semenov, and M. Siegel url  openurl
  Title Detection efficiency of a spiral-nanowire superconducting single-photon detector Type Journal Article
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Critical current, Nanoscale devices, Superconducting photodetectors.  
  Abstract We investigate the detection efficiency of a spiral layout of a Superconducting Nanowire Single-Photon Detector (SNSPD). The design is less susceptible to the critical current reduction in sharp turns of the nanowire than the conventional meander design. Detector samples with different nanowire width from 300 to 100 nm are patterned from a 4 nm thick NbN film deposited on sapphire substrates. The critical current IC at 4.2 K for spiral, meander, and simple bridge structures is measured and compared. On the 100 nm wide samples, the detection efficiency is measured in the wavelength range 400-1700 nm and the cut-off wavelength of the hot-spot plateau is determined. In the optical range, the spiral detector reaches a detection efficiency of 27.6%, which is ~1.5 times the value of the meander. In the infrared range the detection efficiency is more than doubled.  
  Address  
  Corporate Author D. Henrich, L. Rehm S. Dörner, M. Hofherr, K. Il'in, A. Semenov, and M. Siegel Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ seleznev @ Serial 880  
Permanent link to this record
 

 
Author Julia Toussaint, Roman Grüner, Marco Schubert, Torsten May, Hans-Georg Meyer, Benjamin Dietzek, Jürgen Popp, Matthias Hofherr, Matthias Arndt, Dagmar Henrich, Konstantin Il'in, and Michael Siegel openurl 
  Title Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range Type Journal Article
  Year 2012 Publication Abbreviated Journal AIP REVIEW OF SCIENTIFIC INSTRUMENTS  
  Volume 83 Issue Pages  
  Keywords SSPD, picosecond, time-resolution  
  Abstract We have developed a cryogenic measurement system for single-photon counting, which can be used

in optical experiments requiring high time resolution in the picosecond range. The system utilizes

niobium nitride superconducting nanowire single-photon detectors which are integrated in a timecorrelated

single-photon counting (TCSPC) setup. In this work, we describe details of the mechanical

design, the electrical setup, and the cryogenic optical components. The performance of the complete

system in TCSPC mode is tentatively benchmarked using 140 fs long laser pulses at a repetition

frequency of 75MHz. Due to the high temporal stability of these pulses, the measured time resolution

of 35 ps (FWHM) is limited by the timing jitter of the measurement system. The result was crosschecked

in a Coherent Anti-stokes Raman Scattering (CARS) setup, where scattered pulses from a

β-barium borate crystal have been detected with the same time resolution.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) RPLAB @ seleznev @ Serial 885  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: