|
Record |
Links |
|
Author |
Julia Toussaint, Roman Grüner, Marco Schubert, Torsten May, Hans-Georg Meyer, Benjamin Dietzek, Jürgen Popp, Matthias Hofherr, Matthias Arndt, Dagmar Henrich, Konstantin Il'in, and Michael Siegel |
|
|
Title |
Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range |
Type |
Journal Article |
|
Year |
2012 |
Publication |
|
Abbreviated Journal |
AIP REVIEW OF SCIENTIFIC INSTRUMENTS |
|
|
Volume |
83 |
Issue |
|
Pages |
|
|
|
Keywords |
SSPD, picosecond, time-resolution |
|
|
Abstract |
We have developed a cryogenic measurement system for single-photon counting, which can be used
in optical experiments requiring high time resolution in the picosecond range. The system utilizes
niobium nitride superconducting nanowire single-photon detectors which are integrated in a timecorrelated
single-photon counting (TCSPC) setup. In this work, we describe details of the mechanical
design, the electrical setup, and the cryogenic optical components. The performance of the complete
system in TCSPC mode is tentatively benchmarked using 140 fs long laser pulses at a repetition
frequency of 75MHz. Due to the high temporal stability of these pulses, the measured time resolution
of 35 ps (FWHM) is limited by the timing jitter of the measurement system. The result was crosschecked
in a Coherent Anti-stokes Raman Scattering (CARS) setup, where scattered pulses from a
β-barium borate crystal have been detected with the same time resolution. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ seleznev @ |
Serial |
885 |
|
Permanent link to this record |