|   | 
Details
   web
Records
Author Marsili, F.; Bitauld, D.; Divochiy, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.; Lagoudakis, K.G.; Benkahoul, M.; Lévy, F.; Fiore, A.
Title Superconducting nanowire photon number resolving detector at telecom wavelength Type Conference Article
Year 2008 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages Qmj1 (1 to 2)
Keywords PNR SSPD; SNSPD; Detectors; Infrared; Low light level; Diode lasers; Photons; Scanning electron microscopy; Superconductors; Ti:sapphire lasers
Abstract We demonstrate a photon-number-resolving (PNR) detector, based on parallel superconducting nanowires, capable of resolving up to 5 photons in the telecommunication wavelength range, with sensitivity and speed far exceeding existing approaches.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-55752-859-9 Medium
Area Expedition Conference
Notes Approved no
Call Number Marsili:08 Serial 1243
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Lo, W.; Wilsher, K.
Title Infrared picosecond superconducting single-photon detectors for CMOS circuit testing Type Conference Article
Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages Cmv4
Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Electron beam lithography; Infrared detectors; Infrared radiation; Quantum efficiency; Single photon detectors; Superconductors
Abstract Novel, NbN superconducting single-photon detectors have been developed for ultrafast, high quantum efficiency detection of single quanta of infrared radiation. Our devices have been successfully implemented in a commercial VLSI CMOS circuit testing system.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1518
Permanent link to this record
 

 
Author Thiébeau, C.; Courtois, D.; Delahaigue, A.; Corre, H.; Mouanda, J. C.; Fayt, A.
Title Dual-beam laser heterodyne spectrometer: Ethylene absorption spectrum in the 10 μm range Type Journal Article
Year 1988 Publication Applied Physics B: Photophysics and Laser Chemistry Abbreviated Journal Appl. Phys. B
Volume 47 Issue 4 Pages 313-318
Keywords infrared applications
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0721-7269 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 493
Permanent link to this record
 

 
Author Parrott, Edward P. J.; Zeitler, J. Axel; Fris<cc><152>c<cc><152>ic<cc><81>, Tomislav; Pepper, Michael; Jones, William; Day, Graeme M.; Gladden, Lynn F.
Title Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals Type Journal Article
Year 2009 Publication Crystal Growth & Design Abbreviated Journal Crystal Growth & Design
Volume 9 Issue 3 Pages 1452-1460
Keywords supramolecular recognition, infrared, terahertz, IR, THz, TDS
Abstract Terahertz time-domain-spectroscopy (THz-TDS) has emerged as a versatile spectroscopic technique, and an alternative to powder X-ray diffraction in the characterization of molecular crystals. We tested the ability of terahertz spectroscopy to distinguish between chiral and racemic hydrogen-bonded cocrystals that are similar in molecular and supramolecular structure. Terahertz spectroscopy readily distinguished between the isostructural cocrystals of theophylline with chiral and racemic forms of malic acid which are almost identical in molecular structure and supramolecular architecture. Similarly, the cocrystals of theophylline with chiral and racemic forms of tartaric acid, which are similar at the molecular level but dissimilar in crystal packing, were distinguished unequivocally. The investigation of the same cocrystals using X-ray powder diffraction and Raman spectroscopy suggested that THz-TDS is comparable in sensitivity to diffraction methods and more sensitive than Raman spectroscopy to changes in cocrystal architecture. The differences in spectra acquired by THz-TDS could be further enhanced by cooling the samples to 109 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 567
Permanent link to this record
 

 
Author Teich, M. C.
Title Infrared heterodyne detection Type Conference Article
Year 1968 Publication Proc. IEEE Abbreviated Journal
Volume 56 Issue 1 Pages 37-46
Keywords minimum detectable power, quantum limit, infrared, IR mixer
Abstract Heterodyne experiments have been performed in the middle infrared region of the electromagnetic spectrum using the CO2laser as a radiation source. Theoretically optimum operation has been achieved at kHz heterodyne frequencies using photoconductive Ge:Cu detectors operated at 4°K, and at kHz and MHz frequencies using Pb1-xSnxSe photovoltaic detectors at 77°K. In accordance with the theory, the minimum detectable power observed is a factor of 2/η greater than the theoretically perfect quantum counter, hvΔf. The coefficient 2/η varies from 5 to 25 for the detectors investigated in this study. A comparison is made between photoconductive and photodiode detectors for heterodyne use in the infrared, and it is concluded that both are useful. Heterodyne detection at 10.6 µm is expected to be useful for communications applications, infrared radar, and heterodyne spectroscopy. It has particular significance because of the high radiation power available from the CO2laser, and because of the 8 to 14 µm atmospheric window.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9219 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1060
Permanent link to this record