|   | 
Details
   web
Records
Author Zhang, J.; Verevkin, A.; Slysz, W.; Chulkova, G.; Korneev, A.; Lipatov, A.; Okunev, O.; Gol’tsman, G. N.; Sobolewski, Roman
Title Time-resolved characterization of NbN superconducting single-photon optical detectors Type Conference Article
Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 10313 Issue Pages (down) 103130F (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract NbN superconducting single-photon detectors (SSPDs) are very promising devices for their picosecond response time, high intrinsic quantum efficiency, and high signal-to-noise ratio within the radiation wavelength from ultraviolet to near infrared (0.4 gm to 3 gm) [1-3]. The single photon counting property of NbN SSPDs have been investigated thoroughly and a model of hotspot formation has been introduced to explain the physics of the photon- counting mechanism [4-6]. At high incident flux density (many-photon pulses), there are, of course, a large number of hotspots simultaneously formed in the superconducting stripe. If these hotspots overlap with each other across the width w of the stripe, a resistive barrier is formed instantly and a voltage signal can be generated. We assume here that the stripe thickness d is less than the electron diffusion length, so the hotspot region can be considered uniform. On the other hand, when the photon flux is so low that on average only one hotspot is formed across w at a given time, the formation of the resistive barrier will be realized only when the supercurrent at sidewalks surpasses the critical current (jr) of the superconducting stripe [1]. In the latter situation, the formation of the resistive barrier is associated with the phase-slip center (PSC) development. The effect of PSCs on the suppression of superconductivity in nanowires has been discussed very recently [8, 9] and is the subject of great interest.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Armitage, J. C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 2002, Ottawa, Ontario, Canada
Notes Downloaded from http://www2.ece.rochester.edu/projects/ufqp/PDF/2002/213NbNTimeOPTO_b.pdf This artcle was published in 2017 with only first author indicated (Zhang, J.). There were 8 more authors! Approved no
Call Number Serial 1750
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R.
Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7009 Issue Pages (down) 70090V (1 to 8)
Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting nanost
Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 μm2 in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 μm and 1.55 μm telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-heliumstorage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be < 1.5 ns and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is < 35 ps and their dark-count rate is below 1s-1. The presented performance parameters show that our single-photon receivers are fully applicable for quantum correlation-type QC systems, including practical quantum cryptography.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Sukhoivanov, I.A.; Svich, V.A.; Shmaliy, Y.S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1413
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Divochiy, A.; Antipov, A.; Kaurova, N.; Seleznev, V.; Voronov, B.; Gol’tsman, G.; Pan, D.; Kitaygorsky, J.; Slysz, W.; Sobolewski, R.
Title Ultrafast and high quantum efficiency large-area superconducting single-photon detectors Type Conference Article
Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6583 Issue Pages (down) 65830I (1 to 9)
Keywords SSPD, SNSPD, superconducting NbN films, infrared single-photon detectors
Abstract We present our latest generation of superconducting single-photon detectors (SSPDs) patterned from 4-nm-thick NbN films, as meander-shaped  0.5-mm-long and  100-nm-wide stripes. The SSPDs exhibit excellent performance parameters in the visible-to-near-infrared radiation wavelengths: quantum efficiency (QE) of our best devices approaches a saturation level of  30% even at 4.2 K (limited by the NbN film optical absorption) and dark counts as low as 2x10-4 Hz. The presented SSPDs were designed to maintain the QE of large-active-area devices, but, unless our earlier SSPDs, hampered by a significant kinetic inductance and a nanosecond response time, they are characterized by a low inductance and GHz counting rates. We have designed, simulated, and tested the structures consisting of several, connected in parallel, meander sections, each having a resistor connected in series. Such new, multi-element geometry led to a significant decrease of the device kinetic inductance without the decrease of its active area and QE. The presented improvement in the SSPD performance makes our detectors most attractive for high-speed quantum communications and quantum cryptography applications.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1249
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Rieger, E.; Dorenbos, P.; Zwiller, V.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.N.; Kitaygorsky, J.; Pan, D.; Pearlman, A.; Cross, A.; Komissarov, I.; Sobolewski, R.
Title Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements Type Conference Article
Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6583 Issue Pages (down) 65830J (1 to 11)
Keywords NbN SSPD, SNSPD, superconducting single-photon detectors, single-photon detectors, fiber-coupled optical detectors, quantum correlations, superconducting devices
Abstract We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured ( 100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast and efficient detection of visible to nearinfrared photons with almost negligible dark counts. Our latest devices are pigtailed structures with coupling between the SSPD structure and a single-mode optical fiber achieved using a micromechanical photoresist ring placed directly over the meander. The above arrangement withstands repetitive thermal cycling between liquid helium and room temperature, and we can reach the coupling efficiency of up to  33%. The system quantum efficiency, measured as the ratio of the photons counted by SSPD to the total number of photons coupled into the fiber, in our early devices was found to be around 0.3 % and 1% for 1.55 &mgr;m and 0.9 &mgr;m photon wavelengths, respectively. The photon counting rate exceeded 250 MHz. The receiver with two SSPDs, each individually biased, was placed inside a transport, 60-liter liquid helium Dewar, assuring uninterrupted operation for over 2 months. Since the receiver’s optical and electrical connections are at room temperature, the set-up is suitable for any applications, where single-photon counting capability and fast count rates are desired. In our case, it was implemented for photon correlation experiments. The receiver response time, measured as a second-order photon cross-correlation function, was found to be below 400 ps, with timing jitter of less than 40 ps.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Cryptography
Notes Approved no
Call Number Serial 1431
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R.
Title Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors Type Conference Article
Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5957 Issue Pages (down) 59571K (1 to 10)
Keywords SSPD, SNSPD, single-photon detectors, quantum communication, quantum cryptography, superconductors, infrared optical detectors
Abstract We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Infrared Photoelectronics
Notes Approved no
Call Number Serial 1459
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Slepneva, S.; Seleznev, V.; Chulkova, G.; Okunev, O.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R.
Title Superconducting nanostructured detectors capable of single photon counting of mid-infrared optical radiation Type Conference Article
Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5957 Issue Pages (down) 59570A (1 to 9)
Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting
Abstract We report on our progress in research and development of ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs were made of the 4-nm-thick NbN films with Tc 11 K, patterned as meander-shaped, 100-nm-wide strips, and covering an area of 10×10 μm2. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, a hotspot of excited electrons and redistribution of the biasing supercurrent, jointly produce a picosecond voltage transient signal across the superconducting nanostripe. The SSPDs are typically operated at 4.2 K, but their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by the optical absorption of our 4-nm-thick NbN film. With the wavelength increase of the incident photons,the QE of SSPDs decreases significantly, but even at the wavelength of 6 μm, the detector is able to count single photons and exhibits QE of about 10-2 %. The dark (false) count rate at 2 K is as low as 2x10-4 s,-1 which makes our detector essentially a background-limited sensor. The very low dark-count rate results in a noise equivalent power (NEP) below 10-18 WHz-1/2 for the mid-infrared range (6 μm). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for another, lower-Tc materials with a narrow superconducting gap and low quasiparticles diffusivity. The use of such superconductors should shift the cutoff wavelength below 10 μm.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Infrared Photoelectronics
Notes Approved no
Call Number Serial 1458
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 12 Pages (down) 1689-1692
Keywords NbN SSPD, SNSPD, QE, jitter, dark counts
Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1533
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 51 Issue 9-10 Pages (down) 1447-1458
Keywords NbN SSPD, SNSPD
Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1488
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Rubtsova, I.; Seleznev, V.; Minaeva, O.; Chulkova, G.; Okunev, O.; Voronov, B.; Smirnov, K.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Guziewicz, M.; Bar, J.; Gorska, M.; Pearlman, A.; Kitaygorsky, J.; Cross, A.; Sobolewski, R.
Title Superconducting single-photon detectors designed for operation at 1.55-µm telecommunication wavelength Type Conference Article
Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 43 Issue Pages (down) 1334-1337
Keywords NbN SSPD, SNSPD
Abstract We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1450
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R.
Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.
Volume 39 Issue 14 Pages (down) 1086-1088
Keywords NbN SSPD, SNSPD, applications
Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-5194 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1512
Permanent link to this record
 

 
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J.
Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.
Volume 13 Issue 4 Pages (down) 934-943
Keywords SSPD, SNSPD
Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-260X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1424
Permanent link to this record
 

 
Author Корнеев, А. А.; Минаева, О.; Рубцова, И.; Милостная, И.; Чулкова, Г.; Воронов, Б.; Смирнов, К.; Селезнёв, В.; Гольцман, Г.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Верёвкин, А.; Sobolewski, R.
Title Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Type Journal Article
Year 2005 Publication Квантовая электроника Abbreviated Journal
Volume 35 Issue 8 Pages (down) 698-700
Keywords NbN SSPD, SNSPD
Abstract Представлены результаты исследований сверхпроводящих однофотонных детекторов, изготовленных из ультратонкой пленки NbN. Развитие технологического процесса изготовления детекторов, а также снижение рабочей температуры до 2 К позволили существенно увеличить квантовую эффективность: для видимого света (λ = 0.56 мкм) она составила 30%–40%, т.е. достигла предела, определяемого коэффициентом поглощения пленки. С ростом длины волны квантовая эффективность экспоненциально падает, составляя ~20% на λ=1.55 мкм и ~0.02% на λ = 5 мкм. При скорости темнового счета ~10-4s-1 экспериментально измеренная эквивалентная мощность шума составила 1.5 × 10-20 Вт/Гц-1/2; в дальнейшем она может быть уменьшена до рекордно низкого значения 5 × 10-21 Вт/Гц-1/2. Временное разрешение детектора равно 30 пс.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 383 (Superconducting single-photon ultrathin NbN film detector) Approved no
Call Number Serial 382
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R.
Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
Year 2005 Publication Quantum Electronics Abbreviated Journal
Volume 35 Issue 8 Pages (down) 698-700
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no
Call Number Serial 383
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Wilsher, K.; Lo, W.; Okunev, O.; Korneev, A.; Kouminov, P.; Chulkova, G.; Gol’tsman, G. N.
Title A superconducting single-photon detector for CMOS IC probing Type Conference Article
Year 2003 Publication Proc. 16-th LEOS Abbreviated Journal Proc. 16-th LEOS
Volume 2 Issue Pages (down) 602-603
Keywords NbN SSPD, SNSPD
Abstract In this paper, a novel, time-resolved, NbN-based, superconducting single-photon detector (SSPD) has been developed for probing CMOS integrated circuits (ICs) using photon emission timing analysis (PETA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003.
Notes Approved no
Call Number Serial 1510
Permanent link to this record
 

 
Author Pearlman, A.; Cross, A.; Slysz, W.; Zhang, J.; Verevkin, A.; Currie, M.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Sobolewski, R.
Title Gigahertz counting rates of NbN single-photon detectors for quantum communications Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages (down) 579-582
Keywords NbN SSPD, SNSPD
Abstract We report on the GHz counting rate and jitter of our nanostructured superconducting single-photon detectors (SSPDs). The devices were patterned in 4-nm-thick and about 100-nm-wide NbN meander stripes and covered a 10-/spl mu/m/spl times/10-/spl mu/m area. We were able to count single photons at both the visible and infrared telecommunication wavelengths at rates of over 2 GHz with a timing jitter of below 18 ps. We also present the model for the origin of the SSPD switching dynamics and jitter, based on the time-delay effect in the phase-slip-center formation mechanism during the detector photoresponse process. With further improvements in our readout electronics, we expect that our SSPDs will reach counting rates of up to 10 GHz. An integrated quantum communications receiver based on two fiber-coupled SSPDs and operating at 1550-nm wavelength is also presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1465
Permanent link to this record