|   | 
Details
   web
Records
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 51 Issue 9-10 Pages 1447-1458
Keywords NbN SSPD, SNSPD
Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1488
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title NbN hot electron bolometer mixers with superior performance for space applications Type Conference Article
Year 2004 Publication Proc. Int. workshop on low temp. electronics Abbreviated Journal Proc. Int. workshop on low temp. electronics
Volume Issue Pages 11-17
Keywords NbN HEB mixers, applications
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Noordwijk Editor Armandillo, E.; Leone, B.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference International workshop on low temperature electronics- WOLTE 6 - Noordwijk
Notes Approved no
Call Number Serial 1496
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Noise performance of NbN hot electron bolometer mixers at 2.5 THz and its dependence on the contact resistance Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 11-19
Keywords NbN HEB mixers
Abstract NbN hot electron bolometer mixers (HEBM) are at this moment the best heterodyne receivers for frequencies above 1 Thz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. The result is a low transparency interface between the bolometer itself and the contact/antenna structure. In this paper we report a detailed experimental study on a novel idea to increase the transparency of this interface. This leads to a record sensitivity and more reproducible performance. We compare identical bolometers, coupled with a spiral antenna, with different NbN bolometer-contact pad interfaces. We find that cleaning the NbN interface alone results in an increase in the noise temperature. However, cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature of the HEBm with more than a factor of 2. A device with a contact pad on top of an in-situ cleaned NbN film consisting of 10 nm of NbTiN and 40 nm of gold has a DSB noise temperature of 1050 K at 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1497
Permanent link to this record
 

 
Author Yagoubov, P. L.; Hoogeveen, R. W. M.; Maurellis, A. M.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Hiibers, H.-W.; Richter, H.; Semenov, A.; Gol'tsman, G.; Voronov, B.; Koshelets, V.; Shitov, S.; Ellison, B.; Kerridge, B.; Matheson, D.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J.
Title TELIS — development of a new balloon borne THz/submm heterodyne limb sounder Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 204-214
Keywords limb-sounder, TELIS
Abstract We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth's atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organisation of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) in the United Kingdom and the Deutschen Zentrum far Luft- und Raumfahrt (DLR) in Germany (lead institute). TELIS will utilise state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument capable of providing broad spectral coverage, high spectral resolution and long flight duration (-24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constituents such as OH, HO,, C10, BrO together will longer lived constituents such as 0 3 , HCL and N 2 0. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the University of Karlsruhe, Germany. MIPAS-B will provide simultaneous and complementary spectral measurements over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spacebome instruments planned by the European Space Agency (ESA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1499
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W.
Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 405-412
Keywords NbN HEB mixers
Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1502
Permanent link to this record
 

 
Author Il'in, K.; Siegel, M.; Semenov, A.; Engel, A.; Hübers, H.-W.; Hollmann, E.; Gol'tsman, G.; Voronov, B.
Title Thickness dependence of superconducting properties of ultrathin Nb and NbN films Type Conference Article
Year 2004 Publication AKF-Frühjahrstagung Abbreviated Journal
Volume Issue Pages
Keywords Nb, NbN films, has potential plagiarism
Abstract
Address Berlin-Adlershof
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1503
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R.
Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.
Volume 39 Issue 14 Pages 1086-1088
Keywords NbN SSPD, SNSPD, applications
Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-5194 ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1512
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W.
Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 361-370
Keywords NbN HEB mixers
Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 1521
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, A.; Richter, H.; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Phonon cooled far-infrared hot electron bolometer mixer Type Abstract
Year 2002 Publication NASA/ADS Abbreviated Journal NASA/ADS
Volume Issue Pages
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy need quantum-limited sensitivity. At frequencies above 1.4 THz superconducting hot electron bolometers (HEB) can be used to achieve this goal. We present results of the development of a quasi-optical phonon-cooled NbN HEB mixer for GREAT, the German heterodyne receiver for SOFIA. Different mixers with logarithmic spiral and double slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern at several frequencies between 0.7 THz and 5.2 THz. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 16 dB. The response of the mixer was linear up to 400 K load temperature. This performance was verified by measuring an emission line of methanol at 2.5 THz. The results demonstrate that the NbN HEB is very well suited as a mixer for FIR heterodyne receivers.
Address Monterey, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, 1-3 April 2002
Notes id.37 Approved no
Call Number Serial 1534
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M.
Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 448-453
Keywords NbN HEB mixers, applications
Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1526
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W.
Title 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 427-431
Keywords NbN HEB mixers, applications
Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1527
Permanent link to this record
 

 
Author Loudkov, D.; Khosropanah, P.; Cherednichenko, S.; Adam, A.; MerkeI, H.; Kollberg, E.; Gol'tsman, G.
Title Broadband fourier transform spectrometer (FTS) measurements of spiral and double-slot planar antennas at THz frequencies Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 373-369
Keywords NbN HEB mixers
Abstract The direct responses of NbN phonon-cooled hot electron bolometer (HEB) mixers, integrated with different planar antennas, are measured, using Fourier Transform Spectrometer (F1S). One spiral antenna and several double slot antennas, designed for 0.6, 1.4, 1.6, 1.8 and 2.5 THz central frequencies, are investigated. The Optimization of the measurement set-up is discussed in terms of the beam splitter and the F11S-to-HEB coupling. The result shows that the spiral antenna is circular polarized and has a bandwidth of about 2 THz. The frequency bands of double slot antennas show some shift from the design values and their relative bandwidth increases by increasing the design frequency. The antenna responses do not depend on the HEB bias point and temperature, as long as the device is in the resistive state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1530
Permanent link to this record
 

 
Author Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, Roman
Title Ultrafast NBN hot-electron single-photon detectors for electronic applications Type Abstract
Year 2002 Publication Abstracts 8-th IUMRS-ICEM Abbreviated Journal Abstracts 8-th IUMRS-ICEM
Volume Issue Pages
Keywords NbN SSPD, SNSPD
Abstract We present a new, simple to manufacture, single-photon detector (SPD), which can work from ultraviolet to near-infrared wavelengths of optical radiation and combines high speed of operation, high quantum efficiency (QE), and very low dark counts. The devices are superconducting and operate at temperature below 5 K. The physics of operation of our SPD is based on formation of a photon-induced resistive hotspot and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconductor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference 8th IUMRS International Conference on Electronic Materials
Notes Approved no
Call Number Serial 1532
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 12 Pages 1689-1692
Keywords NbN SSPD, SNSPD, QE, jitter, dark counts
Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1533
Permanent link to this record
 

 
Author Verevkin, A.; Gershenzon, E. M.; Gol'tsman, G. N.; Ptitsina, N. G.; Chulkova, G. M.; Smirnov, K. S.; Sobolewski, R.
Title Direct measurements of energy relaxation times in two-dimensional structures under quasi-equilibrium conditions Type Conference Article
Year 2002 Publication Mater. Sci. Forum Abbreviated Journal Mater. Sci. Forum
Volume 384-3 Issue Pages 107-116
Keywords 2DEG, AlGaAs/GaAs
Abstract A new microwave technique was successfully applied for direct studies of energy relaxation times in two-dimensional AlGaAs/GaAs structures under quasi-equilibrium conditions in the nanosecond and picosecond time scale. We report our results of energy relaxation time measurements in the temperature range 1.6-50 K, in quantum Hall effect regime in magnetic fields up to 4 T.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference Materials Science Forum
Notes Approved no
Call Number Serial 1536
Permanent link to this record