|   | 
Details
   web
Records
Author Fiore, A.; Marsili, F.; Bitauld, D.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.
Title Counting photons using a nanonetwork of superconducting wires Type Conference Article
Year 2009 Publication Nano-Net Abbreviated Journal
Volume Issue Pages 120-122
Keywords SSPD, SNSPD
Abstract We show how the parallel connection of photo-sensitive superconducting nanowires can be used to count the number of photons in an optical pulse, down to the single-photon level. Using this principle we demonstrate photon-number resolving detectors with unprecedented sensitivity and speed at telecommunication wavelengths.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Berlin, Heidelberg Editor Cheng, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-3-642-02427-6 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1007/978-3-642-02427-6_20 Serial 1242
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, Alexej D.; Hübers, H.-W.; Ilin, K.; Siegel, M.; Charaev, I.; Moshkova, M.; Kaurova, N.; Goltsman, G. N.; Zhang, X.; Schilling, A.
Title Electron energy relaxation in disordered superconducting NbN films Type Journal Article
Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 102 Issue 5 Pages 054501 (1 to 15)
Keywords NbN SSPD, SNSPD, HEB, bandwidth, relaxation time
Abstract We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product qTl (qT is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/τe−ph∼Tn with the exponents n≈3.2–3.8. We found that in this temperature range τe−ph and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1266
Permanent link to this record
 

 
Author Tretyakov, I.; Svyatodukh, S.; Chumakova, A.; Perepelitsa, A.; Kaurova, N.; Shurakov, A.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title Room temperature silicon detector for IR range coated with Ag2S quantum dots Type Conference Article
Year 2019 Publication IRMMW-THz Abbreviated Journal
Volume Issue Pages
Keywords Ag2S quantum dots
Abstract A silicon has been the chief technological semiconducting material of modern microelectronics and has had a strong influence on all aspects of society. Applications of Si-based optoelectronic devices are limited to the visible and near infrared ranges. The expansion of the Si absorption to shorter wavelengths of the infrared range is of considerable interest to optoelectronic applications. By creating impurity states in Si it is possible to cause sub-band gap photon absorption. Here, we present an elegant and effective technology of extending the photoresponse of towards the IR range. Our approach is based on the use of Ag 2 S quantum dots (QDs) planted on the surface of Si. The specific sensitivity of the Ag 2 S/Si heterostructure is 10 11 cm√HzW -1 at 1.55μm. Our findings open a path towards the future study and development of Si detectors for technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2162-2035 ISBN 978-1-5386-8285-2 Medium
Area Expedition Conference
Notes Approved no
Call Number 8874267 Serial 1286
Permanent link to this record
 

 
Author Goltsman, G. N.; Korneev, A. A.; Finkel, M. I.; Divochiy, A. V.; Florya, I. N.; Korneeva, Y. P.; Tarkhov, M. A.; Ryabchun, S. A.; Tretyakov, I. V.; Maslennikov, S. N.; Kaurova, N. S.; Chulkova, G. M.; Voronov, B. M.
Title Superconducting hot-electron bolometer as THz mixer, direct detector and IR single-photon counter Type Abstract
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal
Volume Issue Pages 1-1
Keywords SSPD, SNSPD, HEB
Abstract We present a new generation of superconducting single-photon detectors (SSPDs) and hot-electron superconducting sensors with record characteristic for many terahertz and optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2162-2027 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ goltsman2010superconducting Serial 1028
Permanent link to this record
 

 
Author Shurakov, A.; Seliverstov, S.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.
Title Input bandwidth of hot electron bolometer with spiral antenna Type Journal Article
Year 2012 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume 2 Issue 4 Pages 400-405
Keywords NbN HEB bolometers bandwidth, log-spiral antenna
Abstract We report the results of our study of the input bandwidth of hot electron bolometers (HEB) embedded into the planar log-spiral antenna. The sensitive element is made of the ultrathin superconducting NbN film patterned as a bridge at the feed of the antenna. The contacts between the antenna and a sensitive element are made from in situ deposited gold (i.e., deposited over NbN film without breaking vacuum), which gives high quality contacts and makes the response of the HEB at higher frequencies less affected by the RF loss. An accurate experimental spectroscopic procedure is demonstrated that leads to the confirmation of the wide ( 8 THz) bandwidth in this antenna coupled device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1161
Permanent link to this record
 

 
Author Elmanov, I.; Elmanova, A.; Komrakova, S.; Golikov, A.; Kaurova, N.; Kovalyuk, V.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A.
Title Method for determination of resists parameters for photonic – integrated circuits e-beam lithography on silicon nitride platform Type Conference Article
Year 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 220 Issue Pages 03012
Keywords e-beam lithography, Si3N4
Abstract In the work the thicknesses of the e-beam resists ZEP 520A and ma-N 2400 by using non-destructive method were measured, as well as recipe for the high ratio between the Si3N4 and the resists etching rate was determined. The work has a practical application for e-beam lithography of photonic-integrated circuits and nanophotonics devices based on silicon nitride platform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1189
Permanent link to this record
 

 
Author Tretyakov, I.; Kaurova, N.; Raybchun, S.; Goltsman, G. N.; Silaev, A. A.
Title Technology for NbN HEB based multipixel matrix of THz range Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 195 Issue Pages 05011
Keywords NbN HEB
Abstract The influence of homogeneity disorder degree of the thin superconducting NbN film across of Si wafer on characteristics of the Hot Electron Bolometers (HEB) has been investigated. Our experiments have been carried out near the superconducting transition and far below it. The high homogeneity disorder degree of the NbN film has been achieved by preparing the Si substrate surface. The fabricated HEBs all have almost identical R (T) characteristics with a dispersion of Tc and the normal resistance R300 of not more than 0.15K and 2 Ω, respectively. The quality of the devises allows us to demonstrate clearly the influence of non-equilibrium processes in the S’SS’ system on the device performance. Our fabrication technology also allows creating multiplex heterodyne and direct detector matrices based the HEB devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1318
Permanent link to this record
 

 
Author Tretyakov, I.; Svyatodukh, S.; Perepelitsa, A.; Ryabchun, S.; Kaurova, N.; Shurakov, A.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title Ag2S QDs/Si heterostructure-based ultrasensitive SWIR range detector Type Journal Article
Year 2020 Publication Nanomaterials (Basel) Abbreviated Journal Nanomaterials (Basel)
Volume 10 Issue 5 Pages 1-12
Keywords detector; quantum dots; short-wave infrared range; silicon
Abstract In the 20(th) century, microelectronics was revolutionized by silicon-its semiconducting properties finally made it possible to reduce the size of electronic components to a few nanometers. The ability to control the semiconducting properties of Si on the nanometer scale promises a breakthrough in the development of Si-based technologies. In this paper, we present the results of our experimental studies of the photovoltaic effect in Ag2S QD/Si heterostructures in the short-wave infrared range. At room temperature, the Ag2S/Si heterostructures offer a noise-equivalent power of 1.1 x 10(-10) W/ radicalHz. The spectral analysis of the photoresponse of the Ag2S/Si heterostructures has made it possible to identify two main mechanisms behind it: the absorption of IR radiation by defects in the crystalline structure of the Ag2S QDs or by quantum QD-induced surface states in Si. This study has demonstrated an effective and low-cost way to create a sensitive room temperature SWIR photodetector which would be compatible with the Si complementary metal oxide semiconductor technology.
Address Laboratory of nonlinear optics, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan 420029, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Medium
Area Expedition Conference
Notes PMID:32365694; PMCID:PMC7712218 Approved no
Call Number Serial 1151
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G.
Title On-chip coherent detection with quantum limited sensitivity Type Journal Article
Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep
Volume 7 Issue 1 Pages 4812
Keywords waveguide, SSPD, SNSPD
Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.
Address National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28684752; PMCID:PMC5500578 Approved no
Call Number RPLAB @ kovalyuk @ Serial 1129
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume 1 Issue 5 Pages 587-590
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.
Address Hangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1931-7360 ISBN Medium
Area Expedition Conference Progress In Electromagnetics Research Symposium
Notes Approved no
Call Number Serial 1482
Permanent link to this record