toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D. url  doi
openurl 
  Title Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers Type Journal Article
  Year 2015 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 49 Issue 13 Pages 1749-1753  
  Keywords carbon nanotubes, CNT detectors  
  Abstract The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1783  
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I. url  doi
openurl 
  Title Concentration dependence of the intermediate frequency bandwidth of submillimeter heterodyne AlGaAs/GaAs nanostructures Type Journal Article
  Year 2010 Publication Bull. Russ. Acad. Sci. Phys. Abbreviated Journal Bull. Russ. Acad. Sci. Phys.  
  Volume 74 Issue 1 Pages 100-102  
  Keywords 2DEG AlGaAs/GaAs heterostructures, THz heterodyne detectors, IF bandwidth  
  Abstract The concentration dependence of the intermediate frequency bandwidth of heterodyne AlGaAs/GaAs detectors with 2D electron gas is measured using submillimeter spectroscopy with high time resolution at T= 4.2 K. The intermediate frequency bandwidth f3dBfalls from 245 to 145 MHz with increasing concentration of 2D electrons n s = (1.6-6.6) × 10[su11] cm-2. The dependence f3dB ≈ n s – 0.04±is observed in the studied concentration range; this dependence is determined by electron scattering by the deformation potential of acoustic phonons and piezoelectric scattering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1062-8738 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1217  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Li, S. L.; Zhou, K. M.; Shi, S. C.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Measurement of the spectral response of spiral-antenna coupled superconducting hot electron bolometers Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2300804-2300804  
  Keywords NbN HEB detector  
  Abstract Measured spectral response of spiral-antenna coupled superconducting hot electron bolometers (HEBs) often drops dramatically at frequencies that are still within the frequency range of interest (e.g., ~ 5 THz). This is inconsistent with the implied low receiver noise temperatures from the same measurements. To understand this discrepancy, we exhaustively test and calibrate the thermal sources used in Fourier transform spectrometer measurements. We first investigate the absolute emission spectrum of high-pressure Hg arc lamp, then measure the spectral response of two spiral-antenna coupled NbN HEBs with a Martin-Puplett interferometer as spectrometer and 77 K blackbody as broadband signal source. The measured absolute emission spectrum of Hg arc lamp is proportional to frequency, corresponding to an equivalent blackbody temperature of 4000 K at 1 THz, 1500 K at 3 THz, and 800 K at 5 THz, respectively. Measured spectral response of spiral-antenna coupled NbN HEBs, corrected for air absorption, is nearly flat in the frequency range of 0.5-4 THz, consistent with simulated coupling efficiency between HEB and spiral-antenna. These results explain the discrepancy, and prove that spiral-antenna coupled superconducting NbN HEBs work well in a wide frequency range. In addition, this calibration method and these results are broadly applicable to other quasi-optical THz receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1371  
Permanent link to this record
 

 
Author Sclafani, M.; Marksteiner, M.; Keir, F. M. L.; Divochiy, A.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M. url  doi
openurl 
  Title Sensitivity of a superconducting nanowire detector for single ions at low energy Type Journal Article
  Year 2012 Publication Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 23 Issue 6 Pages 065501 (1 to 5)  
  Keywords NbN SSPD, SNSPD, superconducting single ion detector, SSID, SNSID  
  Abstract We report on the characterization of a superconducting nanowire detector for ions at low kinetic energies. We measure the absolute single-particle detection efficiency eta and trace its increase with energy up to eta = 100%. We discuss the influence of noble gas adsorbates on the cryogenic surface and analyze their relevance for the detection of slow massive particles. We apply a recent model for the hot-spot formation to the incidence of atomic ions at energies between 0.2 and 1 keV. We suggest how the differences observed for photons and atoms or molecules can be related to the surface condition of the detector and we propose that the restoration of proper surface conditions may open a new avenue for SSPD-based optical spectroscopy on molecules and nanoparticles.  
  Address Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22248823 Approved no  
  Call Number Serial 1380  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Semenov, A. D.; Gousev, Y. P.; Zorin, M. A.; Gogidze, I. G.; Gershenzon, E. M.; Lang, P. T.; Knott, W. J.; Renk, K. F. url  doi
openurl 
  Title Sensitive picosecond NbN detector for radiation from millimetre wavelengths to visible light Type Journal Article
  Year 1991 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 4 Issue 9 Pages 453-456  
  Keywords NbN HEB detectors  
  Abstract The authors report on the application of a broad-band NbN film detector which has high sensitivity and picosecond response time for detection of radiation from millimetre wavelengths to visible light. From a study of amplitude modulated radiation of backward-wave tubes and picosecond pulses from gas and solid state lasers at wavelengths between 2 mm and 0.53 mu m, they found a detectivity of 1010 W-1 cm Hz-1/2 and a response time of less than 50 ps at T=10 K. The characteristics were provided by using a 150 AA thick NbN film patterned into a structure of micron strips. According to the proposed detection mechanism, namely electron heating, they expect an intrinsic response time of approximately 20 ps at the same temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 242  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: