| 
Citations
 | 
   web
Shangina, E. L., Smirnov, K. V., Morozov, D. V., Kovalyuk, V. V., Gol’tsman, G. N., Verevkin, A. A., et al. (2010). Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons. Semicond., 44(11), 1427–1429.
toggle visibility
Morozov, D. V., Smirnov, K. V., Smirnov, A. V., Lyakhov, V. A., & Goltsman, G. N. (2005). A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure. Semicond., 39(9), 1082–1086.
toggle visibility
Verevkin, A. A., Ptitsina, N. G., Smirnov, K. V., Voronov, B. M., Gol’tsman, G. N., Gershenson, E. M., et al. (1999). Multiple Andreev reflection in hybrid AlGaAs/GaAs structures with superconducting NbN contacts. Semicond., 33(5), 551–554.
toggle visibility
Glejm, A. V., Anisimov, A. A., Asnis, L. N., Vakhtomin, Y. B., Divochiy, A. V., Egorov, V. I., et al. (2014). Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s. Bulletin of the Russian Academy of Sciences. Physics, 78(3), 171–175.
toggle visibility
Shangina, E. L., Smirnov, K. V., Morozov, D. V., Kovalyuk, V. V., Gol’tsman, G. N., Verevkin, A. A., et al. (2010). Concentration dependence of the intermediate frequency bandwidth of submillimeter heterodyne AlGaAs/GaAs nanostructures. Bull. Russ. Acad. Sci. Phys., 74(1), 100–102.
toggle visibility
Smirnov, K., Moshkova, M., Antipov, A., Morozov, P., & Vakhtomin, Y. (2021). The cascade switching of the photon number resolving superconducting single-photon detectors. IEEE Trans. Appl. Supercond., 31(2), 1–4.
toggle visibility
Korneeva, Y. P., Mikhailov, M. Y., Pershin, Y. P., Manova, N. N., Divochiy, A. V., Vakhtomin, Y. B., et al. (2014). Superconducting single-photon detector made of MoSi film. Supercond. Sci. Technol., 27(9), 095012.
toggle visibility
Smirnov, K., Divochiy, A., Vakhtomin, Y., Morozov, P., Zolotov, P., Antipov, A., et al. (2018). NbN single-photon detectors with saturated dependence of quantum efficiency. Supercond. Sci. Technol., 31(3), 035011 (1 to 8).
toggle visibility
Lipatov, A., Okunev, O., Smirnov, K., Chulkova, G., Korneev, A., Kouminov, P., et al. (2002). An ultrafast NbN hot-electron single-photon detector for electronic applications. Supercond. Sci. Technol., 15(12), 1689–1692.
toggle visibility
Goltsman, G., Korneev, A., Divochiy, A., Minaeva, O., Tarkhov, M., Kaurova, N., et al. (2009). Ultrafast superconducting single-photon detector. J. Modern Opt., 56(15), 1670–1680.
toggle visibility
Słysz, W., Wegrzecki, M., Bar, J., Grabiec, P., Górska, M., Zwiller, V., et al. (2007). Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications. J. Modern Opt., 54(2-3), 315–326.
toggle visibility
Verevkin, A., Pearlman, A., Slysz, W., Zhang, J., Currie, M., Korneev, A., et al. (2004). Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications. J. Modern Opt., 51(9-10), 1447–1458.
toggle visibility
Semenov, A. D., Hübers, H. - W., Richter, H., Birk, M., Krocka, M., Mair, U., et al. (2002). 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer. Phys. C: Supercond., 372-376, 448–453.
toggle visibility
Moshkova, M., Divochiy, A., Morozov, P., Vakhtomin, Y., Antipov, A., Zolotov, P., et al. (2019). High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range. J. Opt. Soc. Am. B, 36(3), B20.
toggle visibility
Gol'tsman, G., Maslennikov, S., Finkel, M., Antipov, S., Kaurova, N., Grishina, E., et al. (2006). Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer. In Proc. MRS (Vol. 935, 210 (1 to 6)).
toggle visibility