|   | 
Details
   web
Records
Author Yamashita, Taro; Miki, Shigehito; Qiu, Wei; Fujiwara, Mikio; Sasaki, Masahide; Wang, Zhen
Title Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region Type Journal Article
Year 2010 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 336 - 339
Keywords (down) SNSPD
Abstract We report on the performance of a fiber-coupled superconducting nanowire single-photon detector (SNSPD) from 4 K down to the ultralow temperature of 16 mK for a 1550 nm wave length. The system detection efficiency (DE) increased with de creasing the temperature and reached the considerably high value of 15% with a dark count rate less than 100 cps below 1.5 K, even without an optical cavity structure. We also observed saturation of the system DE in its bias current dependency at 16 mK, which indicates that the device DE of our SNSPD nearly reached intrinsic DE despite the device having a large active area of 20 μm × 20 μm. The dark count was finite even at 16 mK and the black body radiation becomes its dominant origin in the low temperatures for fiber-coupled devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 656
Permanent link to this record
 

 
Author Marsili, Francesco; Najafi, Faraz; Dauler, Eric; Bellei, Francesco; Hu, Xiaolong; Csete, Maria; Molnar, Richard J.; Berggren, Karl K.
Title Single-photon detectors based on ultranarrow superconducting nanowires Type Journal Article
Year 2011 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 11 Issue 5 Pages 2048–2053
Keywords (down) SNSPD
Abstract We report efficient single-photon detection (η = 20% at 1550 nm wavelength) with ultranarrow (20 and 30 nm wide) superconducting nanowires, which were shown to be more robust to constrictions and more responsive to 1550 nm wavelength photons than standard superconducting nanowire single-photon detectors, based on 90 nm wide nanowires. We also improved our understanding of the physics of superconducting nanowire avalanche photodetectors, which we used to increase the signal-to-noise ratio of ultranarrow-nanowire detectors by a factor of 4, thus relaxing the requirements on the read-out circuitry and making the devices suitable for a broader range of applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 659
Permanent link to this record
 

 
Author Yang, J.K.W.; Kerman, A.J.; Dauler, E.A.; Cord, B.; Anant, V.; Molnar, R.J.; Berggren, K.K.
Title Suppressed critical current in superconducting nanowire single-photon detectors with high fill-factors Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 19 Issue 3 Pages 318-322
Keywords (down) SNSPD
Abstract In this work we present a new fabrication process that enabled the fabrication of superconducting nanowire single photon detectors SNSPD with fill-factors as high as 88% with gaps between nanowires as small as 12 nm. This fabrication process combined high-resolution electron-beam lithography with photolithography. Although this work was motivated by the potential of increased detection efficiency with higher fill-factor devices, test results showed an unexpected systematic suppression in device critical currents with increasing fill-factor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 677
Permanent link to this record
 

 
Author Hu, Xiaolong; Zhong, Tian; White, James E.; Dauler, Eric A. Najafi, Faraz; Herder, Charles H.; Wong, Franco N. C.; Berggren, Karl K.
Title Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency Type Journal Article
Year 2009 Publication Optics Letters Abbreviated Journal Opt. Lett.
Volume 34 Issue 23 Pages 3607-3609
Keywords (down) SNSPD
Abstract We developed a fiber-coupled superconducting nanowire single-photon detector system in a close-cycled cryocooler and achieved 24% and 22% system detection efficiencies at wavelengths of 1550 and 1315 nm, respectively. The maximum dark count rate was ~1000 counts/s.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 679
Permanent link to this record
 

 
Author Kerman, Andrew J.; Yang, Joel K. W.; Molnar, Richard J.; Dauler, Eric A.; Berggren, Karl K.
Title Electrothermal feedback in superconducting nanowire single-photon detectors Type Journal Article
Year 2009 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 79 Issue 10 Pages 4
Keywords (down) SNSPD
Abstract We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens naturally through the slow electrical response associated with their relatively large kinetic inductance. If this response is sped up in an effort to increase the device count rate, the electrothermal feedback becomes stable and results in an effect known as latching, where the device is locked in a resistive state and can no longer detect photons. We present a set of experiments which elucidate this effect and a simple model which quantitatively explains the results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 680
Permanent link to this record
 

 
Author Stevens, Martin J.; Baek, Burm; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Hamilton, Scott A.; Berggren, Karl K.; Mirin, Richard P.; Nam, Sae Woo
Title High-order temporal coherences of
chaotic and laser light Type Journal Article
Year 2010 Publication Optics Express Abbreviated Journal Opt. Express
Volume 18 Issue 2 Pages 1430-1437
Keywords (down) SNSPD
Abstract We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third- and fourth-order coherence values of 5.87 ± 0.17 and 23.1 ± 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SSPD Approved no
Call Number RPLAB @ gujma @ Serial 685
Permanent link to this record
 

 
Author Gupta, D.; Kadin, A. M.
Title Single-photon-counting hotspot detector with integrated RSFQ readout electronics Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 9 Issue 2 Pages 4487-4490
Keywords (down) RSFQ, SSPD, SNSPD
Abstract Absorption of an infrared photon in an ultrathin film (such as 10-nm NbN) creates a localized nonequilibrium hotspot on the submicron length scale and sub-ns time scale. If a strip /spl sim/1 /spl mu/m wide is biased in the middle of the superconducting transition, this hotspot will lead to a resistance pulse with amplitude proportional to the energy of the incident photon. This resistance pulse, in turn, can be converted to a current pulse and inductively coupled to a SQUID amplifier with a digitized output, operating at 4 K or above. A preliminary design analysis indicates that this data can be processed on-chip, using ultrafast RSFQ digital circuits, to obtain a sensitive infrared detector for wavelengths up to 10 /spl mu/m and beyond, with bandwidth of 1 GHz, that counts individual photons and measures their energy with 25 meV resolution. This proposed device combines the speed of a hot-electron bolometer with the single-photon-counting ability of a transition-edge microcalorimeter, to obtain an infrared detector with sensitivity, speed, and spectral selectivity that are unmatched by any alternative technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1080
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
Year 2010 Publication Optics Express Abbreviated Journal Opt. Express
Volume 18 Issue 26 Pages 27938-27954
Keywords (down) quantum cryptography; QKD; hacking; SPD; APD
Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 729
Permanent link to this record
 

 
Author Wiechers, C.; Lydersen, L.; Wittmann, C.; Elser, D.; Skaar, J.; Marquardt, Ch; Makarov, V.; Leuchs, G.
Title After-gate attack on a quantum cryptosystem Type Journal Article
Year 2011 Publication New J. Phys. Abbreviated Journal
Volume 13 Issue 1 Pages 14
Keywords (down) quantum cryptography; hacking; interception; attack; SPD; APD; QKD
Abstract We present a method to control the detection events in quantum key distribution systems that use gated single-photon detectors. We employ bright pulses as faked states, timed to arrive at the avalanche photodiodes outside the activation time. The attack can remain unnoticed, since the faked states do not increase the error rate per se. This allows for an intercept-resend attack, where an eavesdropper transfers her detection events to the legitimate receiver without causing any errors. As a side effect, afterpulses, originating from accumulated charge carriers in the detectors, increase the error rate. We have experimentally tested detectors of the system id3110 (Clavis2) from ID Quantique. We identify the parameter regime in which the attack is feasible despite the side effect. Furthermore, we outline how simple modifications in the implementation can make the device immune to this attack.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 730
Permanent link to this record
 

 
Author Takesue, Hiroki; Nam, Sae Woo; Zhang, Qiang; Hadfield, Robert H.; Honjo, Toshimori; Tamaki, Kiyoshi; Yamamoto, Yoshihisa
Title Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors Type Journal Article
Year 2007 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 1 Issue Pages 343-348
Keywords (down) quantum cryptography, SSPD, QKD, DSP
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 609
Permanent link to this record
 

 
Author Stucki, Damien; Barreiro, Claudio; Fasel, Sylvain; Gautier, Jean-Daniel; Gay, Olivier; Gisin, Nicolas; Thew, Rob; Thoma, Yann; Trinkler, Patrick; Vannel, Fabien; Zbinden, Hugo
Title Continuous high speed coherent one-way quantum key distribution Type Journal Article
Year 2009 Publication Optics Express Abbreviated Journal Opt. Express
Volume 17 Issue 16 Pages 13326-13334
Keywords (down) quantum cryptography, QKD, PNS, SSPD, coherent one way, COW
Abstract Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43dB-loss (150km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5bps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 602
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01004 (1 to 2)
Keywords (down) QKD, SSPD, SNSPD
Abstract Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1327
Permanent link to this record
 

 
Author Kurochkin, V. L.; Zverev, A. V.; Kurochkin, Y. V.; Ryabtsev, I. I.; Neizvestnyi, I. G.; Ozhegov, R. V.; Gol’tsman, G. N.; Larionov, P. A.
Title Long-distance fiber-optic quantum key distribution using superconducting detectors Type Conference Article
Year 2015 Publication Proc. Optoelectron. Instrum. Abbreviated Journal Proc. Optoelectron. Instrum.
Volume 51 Issue 6 Pages 548-552
Keywords (down) QKD, SSPD, SNSPD
Abstract This paper presents the results of experimental studies on quantum key distribution in optical fiber using superconducting detectors. Key generation was obtained on an experimental setup based on a self-compensation optical circuit with an optical fiber length of 101.1 km. It was first shown that photon polarization encoding can be used for quantum key distribution in optical fiber over a distance in excess of 300 km.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 8756-6990 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1342
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G.
Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 2-3 Pages 334-344
Keywords (down) PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN
Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 701
Permanent link to this record
 

 
Author Dauler, Eric; Kerman, Andrew; Robinson, Bryan; Yang, Joel; Voronov, Boris; Goltsman, Gregory; Hamilton, Scott; Berggren, Karl
Title Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 2 Pages 364-373
Keywords (down) PNR SSPD; SNSPD; photon-number-resolution; superconducting nanowire single photon detector; timing jitter; system detection efficiency
Abstract A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 700
Permanent link to this record