|   | 
Details
   web
Records
Author Martini, F.; Cibella, S.; Gaggero, A.; Mattioli, F.; Leoni, R.
Title Waveguide integrated hot electron bolometer for classical and quantum photonics Type Journal Article
Year 2021 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 29 Issue 6 Pages 7956-7965
Keywords (down) waveguide HEB
Abstract The development of performant integrated detectors, which are sensitive to quantum fluctuations of coherent light, are strongly desired to realize a scalable and determinist photonic quantum processor based on continuous variables states of light. Here, we investigate the performance of hot electron bolometers (HEBs) fabricated on top of a silicon-on-insulator (SOI) photonic circuit showing responsivities up to 8600 V/W and a record noise equivalent temperature of 1.1 dB above the quantum limit. Thanks to a detailed analysis of the noise sources of the waveguide integrated HEB, we estimate 14.8 dBV clearance between the shot noise and electrical noise with just 1.1microW of local oscillator power. The full technology compatibility with superconducting nanowire single photon detectors (SNSPDs) opens the possibility of nonclassical state engineering and state tomography performed within the same platform, enabling a new class of optical quantum processors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:33820252 Approved no
Call Number Serial 1212
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
Year 2016 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 1-20
Keywords (down) waiveguide SSPD, SNSPD, imaging
Abstract The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1334
Permanent link to this record
 

 
Author Золотов, Ф. И.; Дивочий, А. В.; Вахтомин, Ю. Б.; Пентин, И. В.; Морозов, П. В.; Селезнев, В. А.; Смирнов, К. В.
Title Применение тонких сверхпроводниковых пленок нитрида ванадия для изготовления счетчиков одиночных ИК-фотонов Type Conference Article
Year 2018 Publication Сборн. науч. труд. VII международн. конф. по фотонике и информац. опт. Abbreviated Journal Сборн. науч. труд. VII международн. конф. по фотонике и информац. опт.
Volume Issue Pages 60-61
Keywords (down) VN SSPD, SNSPD
Abstract Получены первые результаты по применению сверхпроводниковых пленок нитрида ванадия (VN) для детекторов одиночных фотонов ИК-диапазона. Изучение сверхпроводниковых однофотонных детекторов (SSPD), изготовленных на основе ультратонких (~5 нм) пленок VN, показало возможность создания устройств с близкой к насыщению зависимостью квантовой эффективности от тока смещения детекторов в телекоммуникационном диапазоне длин волн. Также нами были исследованы кинетическая индуктивность изготовленных структур с различной длиной сверхпроводниковой полоски и времена релаксации электронов в тонких сверхпроводниковых пленках VN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-7262-2445-9 Medium
Area Expedition Conference
Notes УДК 535(06)+004(06) Approved no
Call Number Serial 1252
Permanent link to this record
 

 
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K.
Title Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 10 Issue 1 Pages 16819
Keywords (down) VN HEB
Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.
Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33033360; PMCID:PMC7546726 Approved no
Call Number Serial 1797
Permanent link to this record
 

 
Author Romanov, N. R.; Zolotov, P. I.; Smirnov, K. V.
Title Development of disordered ultra-thin superconducting vanadium nitride films Type Conference Article
Year 2019 Publication Proc. 8th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 8th Int. Conf. Photonics and Information Optics
Volume Issue Pages 425-426
Keywords (down) VN films
Abstract We present the results of development and research of superconducting vanadium nitride VN films ~10 nm thick having different level of disorder. It is showed that both silicon substrate temperature T sub in process of magnetron sputtering and total gas pressure P affect superconducting transition temperature of sputtered films and R 300 /R 20 ratio defining their level of disorder. VN films suitable for development of superconducting single-photon detectors on their basis are obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-7262-2536-4 Medium
Area Expedition Conference
Notes http://fioconf.mephi.ru/files/2018/12/FIO2019-Sbornik.pdf Approved no
Call Number Serial 1802
Permanent link to this record