toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tretyakov, Ivan; Kaurova, N.; Voronov, B. M.; Goltsman, G. N. url  openurl
  Title About effect of the temperature operating conditions on the noise temperature and noise bandwidth of the terahertz range NbN hot-electron bolometers Type Abstract
  Year 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 29th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 113  
  Keywords NbN HEB mixer  
  Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) and NbN bridge length are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb ≪ Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1313  
Permanent link to this record
 

 
Author Sych, Denis; Shcherbatenko, Michael; Elezov, Michael; Goltsman, Gregory N. openurl 
  Title Towards the improvement of the heterodyne receiver sensitivity beyond the quantum noise limit Type Conference Article
  Year 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 29th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 245-247  
  Keywords standard quantum limit, sub-SQL quantum receiver, Kennedy receiver, SSPD, SNSPD  
  Abstract Noise reduction in heterodyne receivers of the terahertz range is an important issue for astronomical applications. Quantum fluctuations, also known as shot noise, prohibit errorless measurements of the amplitude of electro-magnetic waves, and introduce the so-called standard quantum limit (SQL) on the minimum error of the heterodyne measurements. Nowadays, the sensitivity of modern heterodyne receivers approaches the SQL, and the growing demand for the improvement of measurement precision stimulates a number of both theoretical and experimental efforts to design novel measurement techniques aimed at overcoming the SQL. Here we demonstrate the first steps towards the practical implementation of a sub-SQL quantum receiver. As the principal resources, it requires a highly efficient single-photon counting detector and an interferometer-based scheme for mixing the signal with a low-power local oscillator. We describe the idea of such receiver and its main components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1314  
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Terahertz scanning for evaluation of corneal and scleral hydration Type Journal Article
  Year 2018 Publication Sovremennye tehnologii v medicine Abbreviated Journal STM  
  Volume 10 Issue 4 Pages 143-149  
  Keywords BWO; Golay cell; medicine; cornea; sclera; THz radiation; corneal hydration; backward-wave oscillator; avalanche transit-time diode; IMPATT diode  
  Abstract The aim of the investigation was to study the prospects of using continuous THz scanning of the cornea and the sclera to determine water concentration in these tissues and on the basis of the obtained data to develop the experimental installation for monitoring corneal and scleral hydration degree.Materials and Methods. To evaluate corneal and scleral transmittance and reflectance spectra in the THz range, the developed experimental installations were used to study 3 rabbit corneas and 3 scleras, 2 whole rabbit eyes, and 3 human scleras. Besides, two rabbit eyes were studied in vivo prior to keratorefractive surgery as well as 10 and 21 days following the surgery (LASIK).Results. There have been created novel experimental installations enabling in vitro evaluation of frequency dependence of corneal and scleral transmittance coefficients and reflectance coefficients on water percentage in the THz range. Decrease in corneal water content by 1% was found to lead to reliably established decrease in the reflected signal by 13%. The reflectance spectrum of the whole rabbit eye was measured in the range of 0.13–0.32 THz. The study revealed the differences between the indices of rabbit cornea and sclera, as well as rabbit and human sclera. There was developed a laboratory model of the installation for in vivo evaluation of corneal and scleral hydration using THz radiation.Conclusion. The preliminary findings show that the proposed technique based on the use of continuous THz radiation can be employed to create a device for noninvasive control of corneal and scleral hydration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1315  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E. url  doi
openurl 
  Title The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
  Year 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.  
  Volume 5 Issue 13 Pages 27301-27306  
  Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor  
  Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7853 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1316  
Permanent link to this record
 

 
Author Belosevich, V. V.; Gayduchenko, I. A.; Titova, N. A.; Zhukova, E. S.; Goltsman, G. N.; Fedorov, G. E.; Silaev, A. A. url  doi
openurl 
  Title Response of carbon nanotube film transistor to the THz radiation Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 195 Issue Pages 05012 (1 to 2)  
  Keywords field-effect transistor, FET, carbon nanotube, CNT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1317  
Permanent link to this record
 

 
Author Tretyakov, I.; Kaurova, N.; Raybchun, S.; Goltsman, G. N.; Silaev, A. A. url  doi
openurl 
  Title Technology for NbN HEB based multipixel matrix of THz range Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 195 Issue Pages 05011  
  Keywords NbN HEB  
  Abstract The influence of homogeneity disorder degree of the thin superconducting NbN film across of Si wafer on characteristics of the Hot Electron Bolometers (HEB) has been investigated. Our experiments have been carried out near the superconducting transition and far below it. The high homogeneity disorder degree of the NbN film has been achieved by preparing the Si substrate surface. The fabricated HEBs all have almost identical R (T) characteristics with a dispersion of Tc and the normal resistance R300 of not more than 0.15K and 2 Ω, respectively. The quality of the devises allows us to demonstrate clearly the influence of non-equilibrium processes in the S’SS’ system on the device performance. Our fabrication technology also allows creating multiplex heterodyne and direct detector matrices based the HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1318  
Permanent link to this record
 

 
Author Korneeva, Y.; Vodolazov, D.; Florya, I.; Manova, N.; Smirnov, E.; Korneev, A.; Mikhailov, M.; Goltsman, G.; Klapwijk, T. M.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Single photon detection in micron scale NbN and α-MoSi superconducting strips Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 04010 (1 to 2)  
  Keywords SSPD  
  Abstract We experimentally demonstrate the single photon detection in straight micrometer-wide NbN and α-MoSi bridges. Width of the bridges is 2 µm, while the wavelength of the photon changes from 408 to 1550 nm and critical current exceeds 50% of the depairing current. Obtained results offer the alternative route for design of detectors without resonator and meander structure and indirectly confirm vortex assisted mechanism of single photon detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1319  
Permanent link to this record
 

 
Author Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Quantum photonic integrated circuits with waveguide integrated superconducting nanowire single-photon detectors Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 02004 (1 to 2)  
  Keywords waveguide SSPD, SNSPD  
  Abstract We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1320  
Permanent link to this record
 

 
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Gazaliev, A.; Moskotin, M.; Kaurova, N.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Carbon nanotube based schottky diodes as uncooled terahertz radiation detectors Type Journal Article
  Year 2018 Publication Phys. Status Solidi B Abbreviated Journal Phys. Status Solidi B  
  Volume 255 Issue 1 Pages 1700227 (1 to 6)  
  Keywords carbon nanotube schottky diodes, CNT  
  Abstract Despite the intensive development of the terahertz technologies in the last decade, there is still a shortage of efficient room‐temperature radiation detectors. Carbon nanotubes (CNTs) are considered as a very promising material possessing many of the features peculiar for graphene (suppression of backscattering, high mobility, etc.) combined with a bandgap in the carrier spectrum. In this paper, we investigate the possibility to incorporate individual CNTs into devices that are similar to Schottky diodes. The latter is currently used to detect radiation with a frequency up to 50 GHz. We report results obtained with semiconducting (bandgap of about 0.5 eV) and quasi‐metallic (bandgap of few meV) single‐walled carbon nanotubes (SWNTs). Semiconducting CNTs show better performance up to 300 GHz with responsivity up to 100 V W−1, while quasi‐metallic CNTs are shown to operate up to 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1321  
Permanent link to this record
 

 
Author Eletskii, A. V.; Sarychev, A. K.; Boginskaya, I. A.; Bocharov, G. S.; Gaiduchenko, I. A.; Egin, M. S.; Ivanov, A. V.; Kurochkin, I. N.; Ryzhikov, I. A.; Fedorov, G. E. url  doi
openurl 
  Title Amplification of a Raman scattering signal by carbon nanotubes Type Journal Article
  Year 2018 Publication Dokl. Phys. Abbreviated Journal Dokl. Phys.  
  Volume 63 Issue 12 Pages 496-498  
  Keywords carbon nanotubes, CNT, Raman scattering, RLS  
  Abstract The effect of Raman scattering (RLS) signal amplification by carbon nanotubes (CNTs) was studied. Single-layered nanotubes were synthesized by the chemical vapor deposition (CVD) method using methane as a carbon-containing gas. The object of study used was water, the Raman spectrum of which is rather well known. Amplification of the Raman scattering signal by several hundred percent was attained in our work. The maximum amplification of a Raman scattering signal was shown to be achieved at an optimal density of nanotubes on a substrate. This effect was due to the scattering and screening of plasmons excited in CNTs by neighboring nanotubes. The amplification mechanism and the possibilities of optimization for this effect were discussed on the basis of the theory of plasmon resonance in carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1028-3358 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1775  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: