toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sobolewski, R.; Verevkin, A.; Gol'tsman, G.N.; Lipatov, A.; Wilsher, K. url  doi
openurl 
  Title Ultrafast superconducting single-photon optical detectors and their applications Type Journal Article
  Year 2003 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages 1151-1157  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new class of ultrafast single-photon detectors for counting both visible and infrared photons. The detection mechanism is based on photon-induced hotspot formation, which forces the supercurrent redistribution and leads to the appearance of a transient resistive barrier across an ultrathin, submicrometer-width, superconducting stripe. The devices were fabricated from 3.5-nm- and 10-nm-thick NbN films, patterned into <200-nm-wide stripes in the 4 /spl times/ 4-/spl mu/m/sup 2/ or 10 /spl times/ 10-/spl mu/m/sup 2/ meander-type geometry, and operated at 4.2 K, well below the NbN critical temperature (T/sub c/=10-11 K). Continuous-wave and pulsed-laser optical sources in the 400-nm-to 3500-nm-wavelength range were used to determine the detector performance in the photon-counting mode. Experimental quantum efficiency was found to exponentially depend on the photon wavelength, and for our best, 3.5-nm-thick, 100-/spl mu/m/sup 2/-area devices varied from >10% for 405-nm radiation to 3.5% for 1550-nm photons. The detector response time and jitter were /spl sim/100 ps and 35 ps, respectively, and were acquisition system limited. The dark counts were below 0.01 per second at optimal biasing. In terms of the counting rate, jitter, and dark counts, the NbN single-photon detectors significantly outperform their semiconductor counterparts. Already-identified applications for our devices range from noncontact testing of semiconductor CMOS VLSI circuits to free-space quantum cryptography and communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 509  
Permanent link to this record
 

 
Author Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R. url  doi
openurl 
  Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
  Year 2007 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 246-251  
  Keywords SSPD, SNSPD  
  Abstract We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 431  
Permanent link to this record
 

 
Author Xiaolong Hu; Holzwarth, C.W.; Masciarelli, D.; Dauler, E.A.; Berggren, K.K. openurl 
  Title Efficiently coupling light to superconducting nanowire single-photon detectors Type Journal Article
  Year 2009 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 19 Issue 3 Pages 336-340  
  Keywords optical antennas; SNSPD  
  Abstract We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, (1) for the free-space coupling, the absorptance of the NbN nanowire for TM-polarized photons at the wavelength of 1550 nm can be as high as 96% by adding silver optical antennae; (2) for the fiber coupling, the absorptance of the NbN nanowire for TE-like-polarized photons can reach 76% including coupling efficiency at the wavelength of 1550 nm by adding a silicon nitride waveguide and an inverse-taper coupler.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 647  
Permanent link to this record
 

 
Author Yamashita, Taro; Miki, Shigehito; Qiu, Wei; Fujiwara, Mikio; Sasaki, Masahide; Wang, Zhen openurl 
  Title Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region Type Journal Article
  Year 2010 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 21 Issue 3 Pages 336 - 339  
  Keywords SNSPD  
  Abstract We report on the performance of a fiber-coupled superconducting nanowire single-photon detector (SNSPD) from 4 K down to the ultralow temperature of 16 mK for a 1550 nm wave length. The system detection efficiency (DE) increased with de creasing the temperature and reached the considerably high value of 15% with a dark count rate less than 100 cps below 1.5 K, even without an optical cavity structure. We also observed saturation of the system DE in its bias current dependency at 16 mK, which indicates that the device DE of our SNSPD nearly reached intrinsic DE despite the device having a large active area of 20 μm × 20 μm. The dark count was finite even at 16 mK and the black body radiation becomes its dominant origin in the low temperatures for fiber-coupled devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 656  
Permanent link to this record
 

 
Author Yang, J.K.W.; Kerman, A.J.; Dauler, E.A.; Cord, B.; Anant, V.; Molnar, R.J.; Berggren, K.K. openurl 
  Title Suppressed critical current in superconducting nanowire single-photon detectors with high fill-factors Type Journal Article
  Year 2009 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 19 Issue 3 Pages 318-322  
  Keywords SNSPD  
  Abstract In this work we present a new fabrication process that enabled the fabrication of superconducting nanowire single photon detectors SNSPD with fill-factors as high as 88% with gaps between nanowires as small as 12 nm. This fabrication process combined high-resolution electron-beam lithography with photolithography. Although this work was motivated by the potential of increased detection efficiency with higher fill-factor devices, test results showed an unexpected systematic suppression in device critical currents with increasing fill-factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 677  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: