toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneev, A.; Kovalyuk, V.; An, P.; Golikov, A.; Zubkova, E.; Ferrari, S.; Kahl, O.; Pernice, W.; Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Superconducting single-photon detector for integrated waveguide spectrometer Type Conference Article
  Year 2018 Publication (down) EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 04009  
  Keywords SSPD, SNSPD, Si3N4 waveguides, waveguide spectrometer  
  Abstract We present our recent achievements in the development of an on-chip spectrometer consisting of arrayed waveguide grating made of Si3N4 waveguides and NbN superconducting single-photon detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1199  
Permanent link to this record
 

 
Author Glejm, A. V.; Anisimov, A. A.; Asnis, L. N.; Vakhtomin, Yu. B.; Divochiy, A. V.; Egorov, V. I.; Kovalyuk, V. V.; Korneev, A. A.; Kynev, S. M.; Nazarov, Yu. V.; Ozhegov, R. V.; Rupasov, A. V.; Smirnov, K. V.; Smirnov, M. A.; Goltsman, G. N.; Kozlov, S. A. doi  openurl
  Title Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s Type Journal Article
  Year 2014 Publication (down) Bulletin of the Russian Academy of Sciences. Physics Abbreviated Journal  
  Volume 78 Issue 3 Pages 171-175  
  Keywords SSPD, SNSPD, applications  
  Abstract An experimental demonstration of a subcarrier-wave quantum cryptography system with superconducting single-photon detectors (SSPDs) that distributes a secure key in a single-mode fiber at distance of 25 km with a bit rate of 800 kbit/s, a distance of 100 km with a bit rate of 19 kbit/s, and a distance of 200 km with a bit rate of 0.18 kbit/s is described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-8738 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 940  
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I. url  doi
openurl 
  Title Concentration dependence of the intermediate frequency bandwidth of submillimeter heterodyne AlGaAs/GaAs nanostructures Type Journal Article
  Year 2010 Publication (down) Bull. Russ. Acad. Sci. Phys. Abbreviated Journal Bull. Russ. Acad. Sci. Phys.  
  Volume 74 Issue 1 Pages 100-102  
  Keywords 2DEG AlGaAs/GaAs heterostructures, THz heterodyne detectors, IF bandwidth  
  Abstract The concentration dependence of the intermediate frequency bandwidth of heterodyne AlGaAs/GaAs detectors with 2D electron gas is measured using submillimeter spectroscopy with high time resolution at T= 4.2 K. The intermediate frequency bandwidth f3dBfalls from 245 to 145 MHz with increasing concentration of 2D electrons n s = (1.6-6.6) × 10[su11] cm-2. The dependence f3dB ≈ n s – 0.04±is observed in the studied concentration range; this dependence is determined by electron scattering by the deformation potential of acoustic phonons and piezoelectric scattering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-8738 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1217  
Permanent link to this record
 

 
Author Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R. url  doi
openurl 
  Title Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers Type Journal Article
  Year 2017 Publication (down) Beilstein J. Nanotechnol. Abbreviated Journal Beilstein J. Nanotechnol.  
  Volume 8 Issue Pages 38-44  
  Keywords carbon nanotubes; CNT; infrared; integrated optics devices; nanomaterials  
  Abstract Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.  
  Address Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Darmstadt 64287, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28144563; PMCID:PMC5238692 Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1109  
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  openurl
  Title Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
  Year 2016 Publication (down) arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 1-20  
  Keywords waiveguide SSPD, SNSPD, imaging  
  Abstract The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1334  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: