|   | 
Details
   web
Records
Author Gao, J. R.; Hajenius, M.; Yang, Z. Q.; Baselmans, J. J. A.; Khosropanah, P.; Barends, R.; Klapwijk, T. M.
Title (down) Terahertz superconducting hot electron bolometer heterodyne receivers Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 17 Issue 2 Pages 252-258
Keywords HEB, mixer, direct detection effect
Abstract We highlight the progress on NbN hot electron bolometer (HEB) mixers achieved through fruitful collaboration between SRON Netherlands Institute for Space Research and Delft University of Technology, the Netherlands. This includes the best receiver noise temperatures of 700 K at 1.63 THz using a twin-slot antenna mixer and 1050 K at 2.84 THz using a spiral antenna coupled HEB mixer. The mixers are based on thin NbN films on Si and fabricated with a new contact-process and-structure. By reducing their areas HEB mixers have shown an LO power requirement as low as 30 nW. Those small HEB mixers have demonstrated equivalent sensitivity as those with large areas provided the direct detection effect due to broadband radiation is removed. To manifest that a HEB based heterodyne receiver can in practice be used at arbitrary frequencies above 2 THz, we demonstrate a 2.8 THz receiver using a THz quantum cascade laser (QCL) as local oscillator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ asmirn @ Serial 557
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory
Title (down) Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 3 Pages 293-296
Keywords HEB mixer
Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 636
Permanent link to this record
 

 
Author Yamashita, Taro; Miki, Shigehito; Qiu, Wei; Fujiwara, Mikio; Sasaki, Masahide; Wang, Zhen
Title (down) Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region Type Journal Article
Year 2010 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 336 - 339
Keywords SNSPD
Abstract We report on the performance of a fiber-coupled superconducting nanowire single-photon detector (SNSPD) from 4 K down to the ultralow temperature of 16 mK for a 1550 nm wave length. The system detection efficiency (DE) increased with de creasing the temperature and reached the considerably high value of 15% with a dark count rate less than 100 cps below 1.5 K, even without an optical cavity structure. We also observed saturation of the system DE in its bias current dependency at 16 mK, which indicates that the device DE of our SNSPD nearly reached intrinsic DE despite the device having a large active area of 20 μm × 20 μm. The dark count was finite even at 16 mK and the black body radiation becomes its dominant origin in the low temperatures for fiber-coupled devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 656
Permanent link to this record
 

 
Author Yang, J.K.W.; Kerman, A.J.; Dauler, E.A.; Cord, B.; Anant, V.; Molnar, R.J.; Berggren, K.K.
Title (down) Suppressed critical current in superconducting nanowire single-photon detectors with high fill-factors Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 19 Issue 3 Pages 318-322
Keywords SNSPD
Abstract In this work we present a new fabrication process that enabled the fabrication of superconducting nanowire single photon detectors SNSPD with fill-factors as high as 88% with gaps between nanowires as small as 12 nm. This fabrication process combined high-resolution electron-beam lithography with photolithography. Although this work was motivated by the potential of increased detection efficiency with higher fill-factor devices, test results showed an unexpected systematic suppression in device critical currents with increasing fill-factor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 677
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N.
Title (down) Superconducting nanowire single photon detector for coherent detection of weak signals Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords NbN SSPD mixer, SNSPD, nanophotonic waveguide
Abstract Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1206
Permanent link to this record