toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Somani, S.; Kasapi, S.; Wilsher, K.; Lo, W.; Sobolewski, R.; Gol’tsman, G. url  doi
openurl 
  Title (up) New photon detector for device analysis: Superconducting single-photon detector based on a hot electron effect Type Journal Article
  Year 2001 Publication J. Vac. Sci. Technol. B Abbreviated Journal J. Vac. Sci. Technol. B  
  Volume 19 Issue 6 Pages 2766-2769  
  Keywords NbN SSPD, SNSPD  
  Abstract A novel superconducting single-photon detector (SSPD), intrinsically capable of high quantum efficiency (up to 20%) over a wide spectral range (ultraviolet to infrared), with low dark counts (<1 cps), and fast (<40 ps) timing resolution, is described. This SSPD has been used to perform timing measurements on complementary metal–oxide–semiconductor integrated circuits (ICs) by detecting the infrared light emission from switching transistors. Measurements performed from the backside of a 0.13 μm geometry flip–chip IC are presented. Other potential applications for this detector are in telecommunications, quantum cryptography, biofluorescence, and chemical kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734211X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1542  
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneev, A. A.; Chulkova, G. M.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Goltsman, G. N. url  openurl
  Title (up) Non-bolometric bottleneck in electron-phonon relaxation in ultra-thin WSi film Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in tau{e-ph} = 140-190 ps at TC = 3.4 K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1305 Approved no  
  Call Number Serial 1341  
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N. url  doi
openurl 
  Title (up) Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
  Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 97 Issue 18 Pages 184512 (1 to 13)  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1305  
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R. url  doi
openurl 
  Title (up) Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.  
  Volume 39 Issue 14 Pages 1086-1088  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-5194 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1512  
Permanent link to this record
 

 
Author Schroeder, E.; Mauskopf, P.; Pilyavsky, G.; Sinclair, A.; Smith, N.; Bryan, S.; Mani, H.; Morozov, D.; Berggren, K.; Zhu, D.; Smirnov, K.; Vakhtomin, Y. url  doi
openurl 
  Title (up) On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs Type Conference Article
  Year 2016 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9907 Issue Pages 99070P (1 to 13)  
  Keywords SPAD, NbN SSPD applications, SNSPD  
  Abstract We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical and Infrared Interferometry and Imaging V  
  Notes Approved no  
  Call Number Serial 1809  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: