|   | 
Details
   web
Records
Author Richards, P. L.; Shen, T. M.; Harris, R. E.; Lloyd, F. L.
Title Quasiparticle heterodyne mixing in SIS tunnel junctions Type Journal Article
Year 1979 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 34 Issue 5 Pages 345-347
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MSPU @ s @ SIS_mixing_qua_part_Richards_1979 Serial 222
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M.
Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type Journal Article
Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 109 Issue 13 Pages 132602
Keywords HEB mixer, contacts
Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1107
Permanent link to this record
 

 
Author Bennett, Douglas A.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.
Title Phase-slip lines as a resistance mechanism in transition-edge sensors Type Journal Article
Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 104 Issue Pages 042602
Keywords microbolometers, TES, phase-slip lines, PSL
Abstract The fundamental mechanism of resistance in voltage-biased superconducting films is poorly understood despite its importance as the basis of transition-edge sensors (TESs). TESs are utilized in state-of-the-art microbolometers and microcalorimeters covering a wide range of energies and applications. We present a model for the resistance of a TES based on phase-slip lines (PSLs) and compare the model to data. One of the model's predictions, discrete changes in the number of PSLs, is a possible explanation for the observed switching between discrete current states in localized regions of bias.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 929
Permanent link to this record
 

 
Author Kardakova, A.; Finkel, M.; Morozov, D.; Kovalyuk, V.; An, P.; Dunscombe, C.; Tarkhov, M.; Mauskopf, P.; Klapwijk, T.M.; Goltsman, G.
Title The electron-phonon relaxation time in thin superconducting titanium nitride films Type Journal Article
Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 25 Pages 252602 (1 to 4)
Keywords disordered TiN films, electron-phonon relaxation time
Abstract We report on the direct measurement of the electron-phonon relaxation time, τeph, in disordered TiN films. Measured values of τeph are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T−3 temperature dependence. The electronic density of states at the Fermi level N0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.

The work was supported by the Ministry of Education and Science of the Russian Federation, Contract No. 14.B25.31.0007 and by the RFBR Grant No. 13-02-91159.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 941
Permanent link to this record
 

 
Author Swetz, D. S.; Bennett, D. A.; Irwin, K. D.; Schmidt, D. R.; Ullom, J. N.
Title Current distribution and transition width in superconducting transition-edge sensors Type Journal Article
Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 101 Issue Pages 242603
Keywords
Abstract Present models of the superconducting-to-normal transition in transition-edge sensors (TESs) do not describe the current distribution within a biased TES. This distribution is complicated by normal-metal features that are integral to TES design. We present a model with one free parameter that describes the evolution of the current distribution with bias. To probe the current distribution experimentally, we fabricated TES devices with different current return geometries. Devices where the current return geometry mirrors current flow within the device have sharper transitions, thus allowing for a direct test of the current-flow model.Measurements from these devices show that current meanders through a TES low in the resistivetransition but flows across the normal-metal features by 40% of the normal-state resistance. Comparison of transition sharpness between device designs reveals that self-induced magnetic fields play an important role in determining the width of the superconducting transition.
Address TES, current distribution
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 930
Permanent link to this record