| 
Citations
 | 
   web
Korneev, A., Divochiy, A., Marsili, F., Bitauld, D., Fiore, A., Seleznev, V., et al. (2008). Superconducting photon number resolving counter for near infrared applications. In P. Tománek, D. Senderáková, & M. Hrabovský (Eds.), Proc. SPIE (Vol. 7138, 713828 (1 to 5)). Spie.
toggle visibility
Korneev, A., Minaeva, O., Divochiy, A., Antipov, A., Kaurova, N., Seleznev, V., et al. (2007). Ultrafast and high quantum efficiency large-area superconducting single-photon detectors. In M. Dusek, M. S. Hillery, W. P. Schleich, I. Prochazka, A. L. Migdall, & A. Pauchard (Eds.), Proc. SPIE (Vol. 6583, 65830I (1 to 9)). Spie.
toggle visibility
Slysz, W., Wegrzecki, M., Bar, J., Grabiec, P., Górska, M., Latta, C., et al. (2005). Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors. In A. Rogalski, E. L. Dereniak, & F. F. Sizov (Eds.), Proc. SPIE (Vol. 5957, 59571K (1 to 10)). SPIE.
toggle visibility
Johnson, M. A., Betz, A. L., McLaren, R. A., Townes, C. H., & Sutton, E. C. (1976). Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. A&A, 208, 145.
toggle visibility
Betz, A. L., Johnson, M. A., McLaren, R. A., & Sutton, E. C. (1976). Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus. Astrophys. J., 208, L141–L144.
toggle visibility
Rothermel, H., Käufl, H. U., Schrey, U., & Drapatz, S. (1988). Thermal structure of the Martian mesosphere. A&A, 196, 296–300.
toggle visibility
Krasnopolsky, V. A., Maillard, J. P., & C. Owen, T. (2004). Detection of methane in the martian atmosphere: evidence for life? Icarus, 172(2), 537–547.
toggle visibility
Käufl, H. U., Rothermal, H., & Drapatz, S. (1984). Investigation of the Martian atmosphere by 10 micron heterodyne spectroscopy. A&A, 136, 319–325.
toggle visibility
Rothermel, H., Käufl, H. U., & Yu, Y. (1983). A heterodyne spectrometer for astronomical measurements at 10 micrometers. A&A, 126, 387–392.
toggle visibility
Gershenson, M. E., Gong, D., Sato, T., Karasik, B. S., & Sergeev, A. V. (2001). Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures. Appl. Phys. Lett., 79, 2049–2051.
toggle visibility
Teich, M. C. (1968). Infrared heterodyne detection. In Proc. IEEE (Vol. 56, pp. 37–46). IEEE.
toggle visibility
Thiébeau, C., Courtois, D., Delahaigue, A., Corre, H., Mouanda, J. C., & Fayt, A. (1988). Dual-beam laser heterodyne spectrometer: Ethylene absorption spectrum in the 10 μm range. Appl. Phys. B, 47(4), 313–318.
toggle visibility
González, F. J., & Boreman, G. D. (2005). Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Inf Phys & Technol, 46(5), 418–428.
toggle visibility
Lobanov, Y., Shcherbatenko, M., Shurakov, A., Rodin, A. V., Klimchuk, A., Nadezhdinsky, A. I., et al. (2014). Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer. Opt. Lett., 39(6), 1429–1432.
toggle visibility
Ferrari, S., Kovalyuk, V., Hartmann, W., Vetter, A., Kahl, O., Lee, C., et al. (2017). Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors. Opt. Express, 25(8), 8739–8750.
toggle visibility