toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semyonov, A. D.; Sergeev, A. V. url  doi
openurl 
  Title Heating of electrons in superconductor in the resistive state due to electromagnetic radiation Type Journal Article
  Year 1984 Publication Solid State Communications Abbreviated Journal Solid State Communications  
  Volume (up) 50 Issue 3 Pages 207-212  
  Keywords Nb HEB  
  Abstract The effect of heating electrons with respect to phonons in a thin superconducting film driven into the resistive state by the current and the external magnetic field has been observed and investigated. This effect caused by the electromagnetic radiation is manifested in the increased resistance of the film and is not selective over the frequency range from 1010 to 1015 Hz. That the effect is frequency independent under the conditions of strong electron scattering caused by static defects is explained by the decisive role of electron -electron collisions in forming the distribution function. The characteristic time of resistance change, obtained experimentally, corresponds to the relaxation time of the order parameter near the superconducting transition and to the relaxation time of the nonelastic electron-phonon interaction at lower temperatures and in lower magnetic fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1709  
Permanent link to this record
 

 
Author Aksaev, E. E.; Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title Interaction of electrons with thermal phonons in YBa2Cu3O7-δ films at low temperatures Type Journal Article
  Year 1989 Publication JETP Lett. Abbreviated Journal JETP Lett.  
  Volume (up) 50 Issue 5 Pages 283-286  
  Keywords YBCO HTS films  
  Abstract The time of electron-phonon interaction tau(eph) in YBaCuO films at low temperatures is studied. This is measured as the time of resistance relaxation in the resistive state of the superconducter, and is also determined from the increase in resistance under the action of radiation. Consistent results of these methods show that resistance relaxation in the resistive state is caused by cooling of the electron subsystem with respect to the phonon subsystem. The time tau(eph) is found to be inversely proportional to the temperature and comes to 80 ps when T = 1.6 K and 5 ps when T = 30 K. 6 refs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1690  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Multanovskii, V. V.; Ptitsyna, N. G. url  openurl
  Title Capture of photoexcited carriers by shallow impurity centers in germanium Type Journal Article
  Year 1979 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume (up) 50 Issue 4 Pages 728-734  
  Keywords Ge, photoexcited carriers, shallow impurity centers  
  Abstract Measurements were made of the lifetimes rf of free carriers and the relaxation time 7, of the submillimeter impurity photoconductivity when carriers are captured by attracting shallow donors and acceptom in Ge. It is nod that in samples with capture-center concentration N,Z 10"cm-' the relaxation time 7, greatly exceeds rf in the temperature range 4.2-12 K. The measured values of 7,- are compared with the calculation of cascade recombination by the classical model. To evaluate the data on T,, the distinguishing features of this model are considered for the nonstationary case. The substantial difference betweea the values of rf and T, is attributed to re-emission of the carriers from the excited states of the shallow impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1720  
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume (up) 51 Issue 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. doi  openurl
  Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
  Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal  
  Volume (up) 52 Issue 8 Pages 576-582  
  Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel  
  Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 599  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: