toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Iomdina, E. N.; Seliverstov, S.; Sianosyan, A.; Teplyakova, K.; Rusova, A.; Goltsman, G. url  doi
openurl 
  Title The prospects of using the radiation for the assessment of corneal and scleral hydration Type Abstract
  Year (up) 2016 Publication Acta Ophthalmol. Abbreviated Journal Acta Ophthalmol.  
  Volume 94 Issue Pages  
  Keywords BWO, avalanche transit‐time diode, medicine, biology  
  Abstract Purpose

An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells – the cornea and the sclera. THz systems creating images in reflected beams are likely to become ideal instruments of noninvasive testing of corneal and scleral hydration degree as THz radiation is highly sensitive to water content. The paper aims at studying the transmittance and reflectance spectra of the cornea and the sclera of rabbit and human eyes, as well as those of the whole rabbit eye, in the frequency range of 0.13–0.32 THz.

Methods

The experiments were carried out on 3 corneas and 3 rabbit scleras, 2 whole rabbit eyes, and 3 human healthy adult scleras using a specially developed THz system based on reliable and easy‐to‐use continuous wave sources: a backward‐wave oscillator and an avalanche transit‐time diode.

Results

The transmittance spectra of the cornea and the sclera and the dependence of the reflection coefficient of these tissues in THz range on water percentage content were determined. Comparison of the rabbit cornea hydrated from 73.2% to 76.3% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration. The decrease of free water concentration by 1% leads to a drop of the reflectance coefficient by 13%. The parameters studied displayed noticeable differences between the sclera and the cornea of rabbits and between rabbit sclera and human sclera.

Conclusions

Preliminary results demonstrate that the proposed technique, based on continuous THz radiation, may be used to create a device for noninvasive testing of corneal and scleral hydration, which has good potential of wide‐scale practical application.

The work was supported by the Russian Foundation of Basic Research (grant No.15‐29‐03843)
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755375X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1333  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N. url  doi
openurl 
  Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
  Year (up) 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 741 Issue Pages 012143 (1 to 6)  
  Keywords carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1336  
Permanent link to this record
 

 
Author Seliverstov, S. V.; Rusova, A. A.; Kaurova, N. S.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Attojoule energy resolution of direct detector based on hot electron bolometer Type Conference Article
  Year (up) 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 741 Issue Pages 012165 (1 to 5)  
  Keywords NbN HEB detector  
  Abstract We characterize superconducting antenna-coupled NbN hot-electron bolometer (HEB) for direct detection of THz radiation operating at a temperature of 9.0 K. At signal frequency of 2.5 THz, the measured value of the optical noise equivalent power is 2.0×10-13 W-Hz-0.5. The estimated value of the energy resolution is about 1.5 aJ. This value was confirmed in the experiment with pulsed 1.55-μm laser employed as a radiation source. The directly measured detector energy resolution is 2 aJ. The obtained risetime of pulses from the detector is 130 ps. This value was determined by the properties of the RF line. These characteristics make our detector a device-of-choice for a number of practical applications associated with detection of short THz pulses.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Seliverstov_2016 Serial 1337  
Permanent link to this record
 

 
Author Schroeder, E.; Mauskopf, P.; Pilyavsky, G.; Sinclair, A.; Smith, N.; Bryan, S.; Mani, H.; Morozov, D.; Berggren, K.; Zhu, D.; Smirnov, K.; Vakhtomin, Y. url  doi
openurl 
  Title On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs Type Conference Article
  Year (up) 2016 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9907 Issue Pages 99070P (1 to 13)  
  Keywords SPAD, NbN SSPD applications, SNSPD  
  Abstract We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical and Infrared Interferometry and Imaging V  
  Notes Approved no  
  Call Number Serial 1809  
Permanent link to this record
 

 
Author Titova, N; Kardakova, A.; Tovpeko, N; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S.R.; Williams, O. A.; Goltsman, G. N. openurl 
  Title Superconducting diamond films as perspective material for direct THz detectors Type Abstract
  Year (up) 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 82  
  Keywords KID, HEB, superconducting diamond films, boron-doped diamond films, Al, TiN, Si substrates, NEP  
  Abstract Superconducting films with a high resistivity in the normal state have established themselves as the best materials for direct THz radiation sensors, such as kinetic inductance detectors (KIDs) [1] and hot electron bolometers (nano-HEBs) [2]. The primary characteristics of the future instrument such as the sensitivity and the response time are determined by the material parameters such as the electron-phonon (e-ph) interaction time, the electron density and the resistivity of the material. For direct detectors, such as KIDs and nano-HEBs, to provide a high sensitivity and low noise one prefer materials with long e-ph relaxation times and low values of the electron density. As a potential material for THz radiation detection we have studied superconducting diamond films. A significant interest to diamond for the development of electronic devices is due to the evolution of its properties with the boron dopant concentration. At a high boron doping concentration, n B ~5·10 20 cm -3 , diamond has been reported to become a superconducting with T c depending on the doping level. Our previous study of energy relaxation in single-crystalline boron-doped diamond films epitaxially grown on a diamond shows a remarkably slow energy-relaxation at low temperatures. The electron-phonon cooling time varies from 400 ns to 700 ns over the temperature range 2.2 K to 1.7 K [3]. In superconducting materials such as Al and TiN, traditionally used in KIDs, the e-ph cooling times at 1.7 K correspond to ~20 ns [4] and ~100 ns [5], correspondingly. Such a noticeable slow e-ph relaxation in boron-doped diamond, in combination with a low value of carrier density (~10 21 cm -3 ) in comparison with typical metals (~10 23 cm -3 ) and a high normal state resistivity (~1500 μΩ·cm) confirms a potential of superconducting diamond for superconducting bolometers and resonator detectors. However, the price and the small substrate growth are of single crystal diamond limit practical applications of homoepitaxial diamond films. As an alternative way with more convenient technology, one can employ heteroepitaxial diamond films grown on large-size Si substrates. Here we report about measurements of e-ph cooling times in superconducting diamond grown on silicon substrate and discuss our expectations about the applicability of boron-doped diamond films to superconducting detectors. Our estimation of limit value of noise-equivalent power (NEP) and the energy resolution of bolometer made from superconducting diamond is order 10 -17 W/Hz 1/2 at 2 K and the energy resolution is of 0.1 eV that corresponds to counting single-photon up to 15 um. The estimation was obtained by using the film thickness of 70 nm and ρ ~ 1500 μΩ·cm, and the planar dimensions that are chosen to couple bolometer with 75 Ω log-spiral antenna. Although the value of NEP is far yet from what might like to have for certain astronomical applications, we believe that it can be improved by a suitable fabrication process. Also the direct detectors, based on superconducting diamond, will offer low noise performance at about 2 K, a temperature provided by inexpensive close-cycle refrigerators, which provides another practical advantage of development and application of these devices. [1] P.K. Day, et. al, Nature, 425, 817, 2003. [2] J. Wei, et al, Nature Nanotech., 3, 496, 2008. [3] A. Kardakova, et al, Phys. Rev. B, 93, 064506, 2016. [4] P. Santhanam and D. Prober, Phys. Rev. B, 29, 3733, 1984 [5] A. Kardakova, et al, Appl. Phys. Lett, vol. 103, p. 252602, 2013.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1173  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: