toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moskotin, M. V.; Gayduchenko, I. A.; Goltsman, G. N.; Titova, N.; Voronov, B. M.; Fedorov, G. F.; Pyatkov, F.; Hennrich, F. url  doi
openurl 
  Title Bolometric effect for detection of sub-THz radiation with devices based on carbon nanotubes Type Conference Article
  Year (down) 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051050 (1 to 5)  
  Keywords field-effect transistor, FET, carbon nanotube, CNT  
  Abstract In this work we investigate the response on THz radiation of a FET device based on an individual carbon nanotube conductance channel. It was already shown, that the response of such devices can be either of diode rectification origin or of thermoelectric effect origin or of their combination. In this work we demonstrate that at 77K and 8K temperatures strong bolometric effect also makes a significant contribution to the response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1301  
Permanent link to this record
 

 
Author Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G. url  doi
openurl 
  Title Towards to the development of THz detectors based on carbon nanostructures Type Conference Article
  Year (down) 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1092 Issue Pages 012039 (1 to 4)  
  Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1302  
Permanent link to this record
 

 
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G. url  doi
openurl 
  Title Graphene-based lateral Schottky diodes for detecting terahertz radiation Type Conference Article
  Year (down) 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V  
  Volume 10680 Issue Pages 30-39  
  Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/12.2307020 Serial 1306  
Permanent link to this record
 

 
Author Baeva, E.; Sidorova, M.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Precise measurement of the thermal conductivity of superconductor Type Conference Article
  Year (down) 2018 Publication Proc. AIP Conf. Abbreviated Journal Proc. AIP Conf.  
  Volume 1936 Issue 1 Pages 020003 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract Measuring the thermal properties such as the heat capacity provide information about intrinsic mechanisms operated inside. In general, the ratio between electron and phonon specific heat Ce/Cp shows how the absorbed energy shared between electron and phonon subsystems. In this work we make estimations for amplitude-modulated absorption of THz radiation technique for investigation of the ratio Ce/Cp in superconducting Niobium Nitride (NbN) at T = Tc. Our results indicates that experimentally the frequency of modulation has to be extra large to extract the quantity. We perform a new technique allowed to work at low frequency with accurately measurement of absorbed power.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number doi:10.1063/1.5025441 Serial 1311  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  openurl
  Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
  Year (down) 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords SSPD  
  Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1303 Approved no  
  Call Number Serial 1312  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Kaurova, N.; Voronov, B. M.; Goltsman, G. N. url  openurl
  Title About effect of the temperature operating conditions on the noise temperature and noise bandwidth of the terahertz range NbN hot-electron bolometers Type Abstract
  Year (down) 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 29th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 113  
  Keywords NbN HEB mixer  
  Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) and NbN bridge length are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb ≪ Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1313  
Permanent link to this record
 

 
Author Sych, Denis; Shcherbatenko, Michael; Elezov, Michael; Goltsman, Gregory N. openurl 
  Title Towards the improvement of the heterodyne receiver sensitivity beyond the quantum noise limit Type Conference Article
  Year (down) 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 29th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 245-247  
  Keywords standard quantum limit, sub-SQL quantum receiver, Kennedy receiver, SSPD, SNSPD  
  Abstract Noise reduction in heterodyne receivers of the terahertz range is an important issue for astronomical applications. Quantum fluctuations, also known as shot noise, prohibit errorless measurements of the amplitude of electro-magnetic waves, and introduce the so-called standard quantum limit (SQL) on the minimum error of the heterodyne measurements. Nowadays, the sensitivity of modern heterodyne receivers approaches the SQL, and the growing demand for the improvement of measurement precision stimulates a number of both theoretical and experimental efforts to design novel measurement techniques aimed at overcoming the SQL. Here we demonstrate the first steps towards the practical implementation of a sub-SQL quantum receiver. As the principal resources, it requires a highly efficient single-photon counting detector and an interferometer-based scheme for mixing the signal with a low-power local oscillator. We describe the idea of such receiver and its main components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1314  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E. url  doi
openurl 
  Title The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
  Year (down) 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.  
  Volume 5 Issue 13 Pages 27301-27306  
  Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor  
  Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7853 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1316  
Permanent link to this record
 

 
Author Belosevich, V. V.; Gayduchenko, I. A.; Titova, N. A.; Zhukova, E. S.; Goltsman, G. N.; Fedorov, G. E.; Silaev, A. A. url  doi
openurl 
  Title Response of carbon nanotube film transistor to the THz radiation Type Conference Article
  Year (down) 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 195 Issue Pages 05012 (1 to 2)  
  Keywords field-effect transistor, FET, carbon nanotube, CNT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1317  
Permanent link to this record
 

 
Author Tretyakov, I.; Kaurova, N.; Raybchun, S.; Goltsman, G. N.; Silaev, A. A. url  doi
openurl 
  Title Technology for NbN HEB based multipixel matrix of THz range Type Conference Article
  Year (down) 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 195 Issue Pages 05011  
  Keywords NbN HEB  
  Abstract The influence of homogeneity disorder degree of the thin superconducting NbN film across of Si wafer on characteristics of the Hot Electron Bolometers (HEB) has been investigated. Our experiments have been carried out near the superconducting transition and far below it. The high homogeneity disorder degree of the NbN film has been achieved by preparing the Si substrate surface. The fabricated HEBs all have almost identical R (T) characteristics with a dispersion of Tc and the normal resistance R300 of not more than 0.15K and 2 Ω, respectively. The quality of the devises allows us to demonstrate clearly the influence of non-equilibrium processes in the S’SS’ system on the device performance. Our fabrication technology also allows creating multiplex heterodyne and direct detector matrices based the HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1318  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: