Records |
Author  |
Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. |
Title |
Superconductivity in highly disordered NbN nanowires |
Type |
Journal Article |
Year |
2016 |
Publication |
Nanotechnol. |
Abbreviated Journal |
Nanotechnol. |
Volume |
27 |
Issue |
47 |
Pages |
47lt02 (1 to 8) |
Keywords |
NbN nanowires |
Abstract |
The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links. |
Address |
National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0957-4484 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:27782000 |
Approved |
no |
Call Number |
|
Serial |
1332 |
Permanent link to this record |
|
|
|
Author  |
Arutyunov, K. Y.; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol’tsman, G. N. |
Title |
Quasi-1-dimensional superconductivity in highly disordered NbN nanowires |
Type |
Miscellaneous |
Year |
2016 |
Publication |
arXiv |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
narrow NbN nanowires, BCS |
Abstract |
The topic of superconductivity in strongly disordered materials has attracted a significant attention. In particular vivid debates are related to the subject of intrinsic spatial inhomogeneity responsible for non-BCS relation between the superconducting gap and the pairing potential. Here we report experimental study of electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. We find that conventional models based on phase slip concept provide reasonable fits for the shape of the R(T) transition curve. Temperature dependence of the critical current follows the text-book Ginzburg-Landau prediction for quasi-one-dimensional superconducting channel Ic~(1-T/Tc)^3/2. Hence, one may conclude that the intrinsic electronic inhomogeneity either does not exist in our structures, or, if exist, does not affect their resistive state properties. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Duplicated as 1332 |
Approved |
no |
Call Number |
|
Serial |
1338 |
Permanent link to this record |
|
|
|
Author  |
Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol'tsman, G.; Bezryadin, A. |
Title |
Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts |
Type |
Journal Article |
Year |
2015 |
Publication |
Sci. Rep. |
Abbreviated Journal |
Sci. Rep. |
Volume |
5 |
Issue |
|
Pages |
10174 (1 to 10) |
Keywords |
SPD, SSPD, SNSPD |
Abstract |
We perform measurements of the switching current distributions of three w approximately 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. |
Address |
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:25988591; PMCID:PMC4437302 |
Approved |
no |
Call Number |
|
Serial |
1344 |
Permanent link to this record |
|
|
|
Author  |
Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol’tsman, G.; Bezryadin, A. |
Title |
Dark counts initiated by macroscopic quantum tunneling in NbN superconducting photon detectors |
Type |
Miscellaneous |
Year |
2014 |
Publication |
arXiv |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
NbN SSPD |
Abstract |
We perform measurements of the switching current distributions of three w = 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
murphy2014dark |
Serial |
1356 |
Permanent link to this record |