toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneeva, Y.; Sidorova, M.; Semenov, A.; Krasnosvobodtsev, S.; Mitsen, K.; Korneev, A.; Chulkova, G.; Goltsman, G. url  doi
openurl 
  Title Comparison of hot-spot formation in NbC and NbN single-photon detectors Type Journal Article
  Year 2016 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (up) 26 Issue 3 Pages 1-4  
  Keywords NbC, NbN SSPD, SNSPD  
  Abstract We report an experimental investigation of the hot-spot evolution in superconducting single-photon detectors made of disordered superconducting materials with different diffusivity and energy downconversion time values, i.e., 33-nm-thick NbN and 23-nm-thick NbC films. We have demonstrated that, in NbC film, only 405-nm photons produce sufficiently large hot spot to trigger a single-photon response. The dependence of detection efficiency on bias current for 405-nm photons in NbC is similar to that for 3400-nm photons in NbN. In NbC, large diffusivity and downconversion time result in 1-D critical current suppression profile compared with the usual 2-D profile in NbN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1348  
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R. doi  openurl
  Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
  Year 2005 Publication Quantum Electronics Abbreviated Journal  
  Volume (up) 35 Issue 8 Pages 698-700  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no  
  Call Number Serial 383  
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R. url  doi
openurl 
  Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.  
  Volume (up) 39 Issue 14 Pages 1086-1088  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-5194 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1512  
Permanent link to this record
 

 
Author Boyarskii, D. A.; Gershenzon, V. E.; Gershenzon, E. M.; Gol'tsman, G. N.; Ptitsina, N. G.; Tikhonov, V. V.; Chulkova, G. M. url  openurl
  Title On the possibility of determining the microstructural parameters of an oil-bearing layer from radiophysical measurement data Type Journal Article
  Year 1996 Publication J. of Communications Technology and Electronics Abbreviated Journal J. of Communications Technology and Electronics  
  Volume (up) 41 Issue 5 Pages 408-414  
  Keywords submillimeter waves, transmission  
  Abstract A method for the reconstruction of microstructural properties of an oil-bearing rock from the spectral dependence of the transmission factor of submillimeter waves is proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes Радиотехника и электроника 41, no. 4 (1996): 441-447 Approved no  
  Call Number Serial 1611  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Rubtsova, I.; Seleznev, V.; Minaeva, O.; Chulkova, G.; Okunev, O.; Voronov, B.; Smirnov, K.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Guziewicz, M.; Bar, J.; Gorska, M.; Pearlman, A.; Kitaygorsky, J.; Cross, A.; Sobolewski, R. url  doi
openurl 
  Title Superconducting single-photon detectors designed for operation at 1.55-µm telecommunication wavelength Type Conference Article
  Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume (up) 43 Issue Pages 1334-1337  
  Keywords NbN SSPD, SNSPD  
  Abstract We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1450  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: