toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sergeev, A. V.; Aksaev, E. E.; Gogidze, I. G.; Gol’tsman, G. N.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Thermal boundary resistance at YBaCuO film-substrate interface Type Conference Article
  Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences  
  Volume 112 Issue (up) Pages 405-406  
  Keywords YBCO films  
  Abstract The nanosecond voltage response of YBaCuo films on Al2O3, MgO and ZrO2 substrates to electromagnetic radiation of millimeter and visible ranges has been investigated. The analysis of experimental conditions for Al2O3 and MgO substrates shows that the resistance change is monitored by the Kapitza boundary shift of temperature during the temporal interval ~ 100 ns limited by the time of phonon return from a substrate into a film. The observed exponential voltage decay is described by the phonon escape time which is proportional to the film thickness and is weakly temperature dependent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992  
  Notes Approved no  
  Call Number Serial 1665  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Sergeev, A.; Semenov, A. D. doi  openurl
  Title Picosecond response of YBaCuO films to electromagnetic radiation Type Conference Article
  Year 1990 Publication Proc. European Conf. High-Tc Thin Films and Single Crystals Abbreviated Journal Proc. European Conf. High-Tc Thin Films and Single Crystals  
  Volume Issue (up) Pages 457-462  
  Keywords YBCO HTS detectors  
  Abstract Radiation-induced change of the resistance was studied in the resistive state of YBaCuO films. Electron-phonon relaxation time T h was determmed from direct ep measurements and analysis of quasistationary electron heating. Temperature dependence of That TS 40 K was found to – ep be T h.. T'. The resul ts show that ep detectors with the response time of few picosecond at nitrogen temperature can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Gorzkowski, W.; Gutowski, M.; Reich, A.; Szymczak, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference European Conference , Ustroń, Poland , 30 Sept – 4 Oct 1989  
  Notes Approved no  
  Call Number Serial 1695  
Permanent link to this record
 

 
Author Zhang, J.; Verevkin, A.; Slysz, W.; Chulkova, G.; Korneev, A.; Lipatov, A.; Okunev, O.; Gol’tsman, G. N.; Sobolewski, Roman url  doi
openurl 
  Title Time-resolved characterization of NbN superconducting single-photon optical detectors Type Conference Article
  Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 10313 Issue (up) Pages 103130F (1 to 3)  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN superconducting single-photon detectors (SSPDs) are very promising devices for their picosecond response time, high intrinsic quantum efficiency, and high signal-to-noise ratio within the radiation wavelength from ultraviolet to near infrared (0.4 gm to 3 gm) [1-3]. The single photon counting property of NbN SSPDs have been investigated thoroughly and a model of hotspot formation has been introduced to explain the physics of the photon- counting mechanism [4-6]. At high incident flux density (many-photon pulses), there are, of course, a large number of hotspots simultaneously formed in the superconducting stripe. If these hotspots overlap with each other across the width w of the stripe, a resistive barrier is formed instantly and a voltage signal can be generated. We assume here that the stripe thickness d is less than the electron diffusion length, so the hotspot region can be considered uniform. On the other hand, when the photon flux is so low that on average only one hotspot is formed across w at a given time, the formation of the resistive barrier will be realized only when the supercurrent at sidewalks surpasses the critical current (jr) of the superconducting stripe [1]. In the latter situation, the formation of the resistive barrier is associated with the phase-slip center (PSC) development. The effect of PSCs on the suppression of superconductivity in nanowires has been discussed very recently [8, 9] and is the subject of great interest.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Armitage, J. C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 2002, Ottawa, Ontario, Canada  
  Notes Downloaded from http://www2.ece.rochester.edu/projects/ufqp/PDF/2002/213NbNTimeOPTO_b.pdf This artcle was published in 2017 with only first author indicated (Zhang, J.). There were 8 more authors! Approved no  
  Call Number Serial 1750  
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I. url  doi
openurl 
  Title Concentration dependence of the intermediate frequency bandwidth of submillimeter heterodyne AlGaAs/GaAs nanostructures Type Journal Article
  Year 2010 Publication Bull. Russ. Acad. Sci. Phys. Abbreviated Journal Bull. Russ. Acad. Sci. Phys.  
  Volume 74 Issue (up) 1 Pages 100-102  
  Keywords 2DEG AlGaAs/GaAs heterostructures, THz heterodyne detectors, IF bandwidth  
  Abstract The concentration dependence of the intermediate frequency bandwidth of heterodyne AlGaAs/GaAs detectors with 2D electron gas is measured using submillimeter spectroscopy with high time resolution at T= 4.2 K. The intermediate frequency bandwidth f3dBfalls from 245 to 145 MHz with increasing concentration of 2D electrons n s = (1.6-6.6) × 10[su11] cm-2. The dependence f3dB ≈ n s – 0.04±is observed in the studied concentration range; this dependence is determined by electron scattering by the deformation potential of acoustic phonons and piezoelectric scattering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-8738 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1217  
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N. url  doi
openurl 
  Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 87 Issue (up) 1 Pages 502-510  
  Keywords NbN HEB mixers, nonthermal  
  Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1558  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: