toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, W.; Miao, W.; Yao, Q. J.; Lin, Z. H.; Shi, S. C.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Spectral response and noise temperature of a 2.5 THz spiral antenna coupled NbN HEB mixer Type Journal Article
  Year 2012 Publication (down) Phys. Procedia Abbreviated Journal Phys. Procedia  
  Volume 36 Issue Pages 334-337  
  Keywords NbN HEB mixer  
  Abstract We report on a 2.5 THz spiral antenna coupled NbN hot electron bolometer (HEB) mixers, fabricated with in-situ process. The receiver noise temperature with lowest value of 1180 K is in good agreement with calculated quantum efficiency factor as a function of bias voltage. In addition, the measured spectral response of the spiral antenna coupled NbN HEB mixer shows broad frequency coverage of 0.8-3 THz, and corrected response for optical losses, FTS, and coupling efficiency between antenna and bolometer falls with frequency due to diffraction-limited beam of lens/antenna combination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-3892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1381  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title NbN nanowire superconducting single-photon detector for mid-infrared Type Journal Article
  Year 2012 Publication (down) Phys. Procedia Abbreviated Journal Phys. Procedia  
  Volume 36 Issue Pages 72-76  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum effciency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum effciency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-3892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1382  
Permanent link to this record
 

 
Author Semenov, A.; Goltsman, G.; Korneev, A. url  doi
openurl 
  Title Quantum detection by current carrying superconducting film Type Journal Article
  Year 2001 Publication (down) Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 351 Issue 4 Pages 349-356  
  Keywords quantum detection, phase slip centers, quasiparticle diffusion  
  Abstract We describe a novel quantum detection mechanism in the superconducting film carrying supercurrent. The mechanism incorporates growing normal domain and breaking of superconductivity by the bias current. A single photon absorbed in the film creates transient normal spot that causes redistribution of the current and, consequently, increase of the current density in superconducting areas. When the current density exceeds the critical value, the film switches into resistive state and generates the voltage pulse. Analysis shows that a submicron-wide film of conventional low temperature superconductor operated in liquid helium may detect single far-infrared photon. The amplitude and duration of the voltage pulse are in the millivolt and picosecond range, respectively. The quantitative model is presented that allows simulation of the detector utilizing this detection mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 507  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Goltsman, G. N.; Multanovskii, V. V.; Ptitsina, N. G. url  openurl
  Title Kinetics of submillimeter impurity and exciton photoconduction in Ge Type Journal Article
  Year 1982 Publication (down) Optics and Spectroscopy Abbreviated Journal Optics and Spectroscopy  
  Volume 52 Issue 4 Pages 454-455  
  Keywords Ge, exciton photoconduction  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1715  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A. url  doi
openurl 
  Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
  Year 2021 Publication (down) Optical Engineering Abbreviated Journal Optical Engineering  
  Volume 60 Issue 8 Pages 1-8  
  Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer  
  Abstract Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/1.Oe.60.8.082019 Serial 1260  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: