toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N. url  doi
openurl 
  Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 741 Issue Pages 012143 (1 to 6)  
  Keywords carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1336  
Permanent link to this record
 

 
Author Iomdina, E. N.; Goltsman, G. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A. url  doi
openurl 
  Title Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range Type Journal Article
  Year 2016 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.  
  Volume 21 Issue 9 Pages 97002 (1 to 5)  
  Keywords BWO, IMPATT diode, Schottky diode, medicine, animals, cornea, physiology, humans, rabbits, sclera diagnostic imaging, physiology  
  Abstract An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.  
  Address Moscow State Pedagogical University, Department of Physics, 29 Malaya Pirogovskaya Street, Moscow 119435, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-3668 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27626901 Approved no  
  Call Number Serial (down) 1335  
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  openurl
  Title Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
  Year 2016 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 1-20  
  Keywords waiveguide SSPD, SNSPD, imaging  
  Abstract The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1334  
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S.; Sianosyan, A.; Teplyakova, K.; Rusova, A.; Goltsman, G. url  doi
openurl 
  Title The prospects of using the radiation for the assessment of corneal and scleral hydration Type Abstract
  Year 2016 Publication Acta Ophthalmol. Abbreviated Journal Acta Ophthalmol.  
  Volume 94 Issue Pages  
  Keywords BWO, avalanche transit‐time diode, medicine, biology  
  Abstract Purpose

An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells – the cornea and the sclera. THz systems creating images in reflected beams are likely to become ideal instruments of noninvasive testing of corneal and scleral hydration degree as THz radiation is highly sensitive to water content. The paper aims at studying the transmittance and reflectance spectra of the cornea and the sclera of rabbit and human eyes, as well as those of the whole rabbit eye, in the frequency range of 0.13–0.32 THz.

Methods

The experiments were carried out on 3 corneas and 3 rabbit scleras, 2 whole rabbit eyes, and 3 human healthy adult scleras using a specially developed THz system based on reliable and easy‐to‐use continuous wave sources: a backward‐wave oscillator and an avalanche transit‐time diode.

Results

The transmittance spectra of the cornea and the sclera and the dependence of the reflection coefficient of these tissues in THz range on water percentage content were determined. Comparison of the rabbit cornea hydrated from 73.2% to 76.3% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration. The decrease of free water concentration by 1% leads to a drop of the reflectance coefficient by 13%. The parameters studied displayed noticeable differences between the sclera and the cornea of rabbits and between rabbit sclera and human sclera.

Conclusions

Preliminary results demonstrate that the proposed technique, based on continuous THz radiation, may be used to create a device for noninvasive testing of corneal and scleral hydration, which has good potential of wide‐scale practical application.

The work was supported by the Russian Foundation of Basic Research (grant No.15‐29‐03843)
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755375X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1333  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-4  
  Keywords NBN HEB mixer  
  Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1331  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: