toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kitaygorsky, J.; Zhang, J.; Verevkin, A.; Sergeev, A.; Korneev, A.; Matvienko, V.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Sobolewski, R. doi  openurl
  Title Origin of dark counts in nanostructured NbN single-photon detectors Type (up) Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 545-548  
  Keywords SSPD dark counts, SNSPD, dark counts rate  
  Abstract We present our study of dark counts in ultrathin (3.5 to 10 nm thick), narrow (120 to 170 nm wide) NbN superconducting stripes of different lengths. In experiments, where the stripe was completely isolated from the outside world and kept at temperature below the critical temperature Tc, we detected subnanosecond electrical pulses associated with the spontaneous appearance of the temporal resistive state. The resistive state manifested itself as generation of phase-slip centers (PSCs) in our two-dimensional superconducting stripes. Our analysis shows that not far from Tc, PSCs have a thermally activated nature. At lowest temperatures, far below Tc, they are created by quantum fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1057  
Permanent link to this record
 

 
Author Pearlman, A.; Cross, A.; Slysz, W.; Zhang, J.; Verevkin, A.; Currie, M.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Sobolewski, R. url  doi
openurl 
  Title Gigahertz counting rates of NbN single-photon detectors for quantum communications Type (up) Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 579-582  
  Keywords NbN SSPD, SNSPD  
  Abstract We report on the GHz counting rate and jitter of our nanostructured superconducting single-photon detectors (SSPDs). The devices were patterned in 4-nm-thick and about 100-nm-wide NbN meander stripes and covered a 10-/spl mu/m/spl times/10-/spl mu/m area. We were able to count single photons at both the visible and infrared telecommunication wavelengths at rates of over 2 GHz with a timing jitter of below 18 ps. We also present the model for the origin of the SSPD switching dynamics and jitter, based on the time-delay effect in the phase-slip-center formation mechanism during the detector photoresponse process. With further improvements in our readout electronics, we expect that our SSPDs will reach counting rates of up to 10 GHz. An integrated quantum communications receiver based on two fiber-coupled SSPDs and operating at 1550-nm wavelength is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1465  
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type (up) Journal Article
  Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 51 Issue 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Nano-structured superconducting single-photon detectors Type (up) Journal Article
  Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal  
  Volume 520 Issue 1-3 Pages 527-529  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1495  
Permanent link to this record
 

 
Author Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R. url  doi
openurl 
  Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type (up) Journal Article
  Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.  
  Volume 39 Issue 14 Pages 1086-1088  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-5194 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1512  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: