toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N. url  openurl
  Title (up) Single-photonics at telecom wavelengths using nanowire superconducting single photon detectors Type Conference Article
  Year 2007 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages QTuF6 (1 to 2)  
  Keywords SSPD, SNSPD  
  Abstract Novel single-photon detectors based on NbN superconducting nanostructures promise orders-of- magnitude improvement over InGaAs APDs. We demonstrate this improved performance for the first time by measuring the g(2)(τ) on single photon states produced by a quantum dot at telecom wavelength.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies  
  Notes Approved no  
  Call Number Zinoni:07 Serial 1432  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M. url  openurl
  Title (up) Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 177-179  
  Keywords directly coupled NbN HEB mixers  
  Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris, France Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 386  
Permanent link to this record
 

 
Author Kaurova, N. S.; Finkel, M. I.; Maslennikov, S. N.; Vahtomin, Yu. B.; Antipov, S. V.; Smirnov, K. V.; Voronov, B. M.; Gol'tsman, G. N.; Ilyin, K. S. openurl 
  Title (up) Submillimeter mixer based on YBa2Cu3O7-x thin film Type Conference Article
  Year 2004 Publication Proc. 1-st conf. Fundamental problems of high temperature superconductivity Abbreviated Journal  
  Volume Issue Pages 291  
  Keywords HTS, HEB mixer  
  Abstract  
  Address Moscow-Zvenigorod  
  Corporate Author Thesis  
  Publisher Place of Publication Moscow-Zvenigorod Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 355  
Permanent link to this record
 

 
Author Vorobyov, V. V.; Kazakov, A. Y.; Soshenko, V. V.; Korneev, A. A.; Shalaginov, M. Y.; Bolshedvorskii, S. V.; Sorokin, V. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Voronov, B. M.; Shalaev, V. M.; Akimov, A. V.; Goltsman, G. N. url  doi
openurl 
  Title (up) Superconducting detector for visible and near-infrared quantum emitters [Invited] Type Journal Article
  Year 2017 Publication Opt. Mater. Express Abbreviated Journal Opt. Mater. Express  
  Volume 7 Issue 2 Pages 513-526  
  Keywords SSPD, SNSPD  
  Abstract Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500–1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1234  
Permanent link to this record
 

 
Author Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V. url  doi
openurl 
  Title (up) Superconducting detector of IR single-photons based on thin WSi films Type Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 737 Issue Pages 012032  
  Keywords WSi SSPD, SNSPD, NEP  
  Abstract We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors' SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1235  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Y. B.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Y. P.; Kaurova, N. S.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title (up) Superconducting hot electron bolometer mixer for middle IR range Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 686-687  
  Keywords IR NbN HEB mixer, detector, GaAs substrate  
  Abstract The developed directly lens coupled hot electron bolometer (HEB) mixer was based on 5 nm superconducting NbN deposited on GaAs substrate. The layout of the structure, including 30x20 mcm^2 active area coupled with a 50 Ohm coplanar line, was patterned by photolithography. The responsivity of the mixer was measured in a direct detection mode in the 25-64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 mum wavelength CW CO2 laser was utilized as a local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 4023440 Serial 1297  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, Heinz-Wilhelm; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Vachtomin, Yu. B.; Finkel, M. I.; Antipov, S. V.; Voronov, B. M.; Smirnov, K. V.; Kaurova, N. S.; Drakinski, V. N.; Gol'tsman, G. N. doi  openurl
  Title (up) Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages 168-171  
  Keywords NbN HEB mixers  
  Abstract We present recent results showing the development of superconducting NbN hot-electron bolometer mixer for German receiver for astronomy at terahertz frequencies and terahertz limb sounder. The mixer is incorporated into a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and backed on a silicon lens. The hybrid antenna had almost frequency independent and symmetric radiation pattern slightly broader than expected for a diffraction limited antenna. At 2.5 THz the best 2200 K double side-band receiver noise temperature was achieved across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. For this operation regime, a receiver conversion efficiency of -17 dB was directly measured and the loss budget was evaluated. The mixer response was linear at load temperatures smaller than 400 K. Implementation of the MgO buffer layer on Si resulted in an increased 5.2 GHz gain bandwidth. The receiver was tested in the laboratory environment by measuring a methanol emission line at 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 343  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Mikhailov, M. Y.; Pershin, Y. P.; Manova, N. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Korneev, A. A.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Y.; Goltsman, G. N. doi  openurl
  Title (up) Superconducting single-photon detector made of MoSi film Type Journal Article
  Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 27 Issue 9 Pages 095012  
  Keywords SSPD, SNSPD  
  Abstract We fabricated and characterized nanowire superconducting single-photon detectors made of 4 nm thick amorphous Mox Si1−x films. At 1.7 K the best devices exhibit a detection efficiency (DE) up to 18% at 1.2 $\mu {\rm m}$ wavelength of unpolarized light, a characteristic response time of about 6 ns and timing jitter of 120 ps. The DE was studied in wavelength range from 650 nm to 2500 nm. At wavelengths below 1200 nm these detectors reach their maximum DE limited by photon absorption in the thin MoSi film.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ korneeva2014superconducting Serial 1044  
Permanent link to this record
 

 
Author Zolotov, P. I.; Vakhtomin, Yu. B.; Divochiy, A. V.; Seleznev, V. A.; Smirnov, K. V. url  isbn
openurl 
  Title (up) Technology development of resonator-based structures for efficiency increasing of NBN detectors of IR single photons Type Journal Article
  Year 2016 Publication Proc. 5th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 5th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 115-116  
  Keywords NbN SSPD  
  Abstract This paper presents a technology of fabrication of NbN superconductive single- photon detectors, using resonator structures. The main results are related to optimization of the process of NbN sputtering over substrate with metallic mirrors and SiO 2 /Si 3 N 4 layers /4 thick. Investigation of the quantum efficiency of fabricated devices at 1.6 K on 1.55 μm showed triple-magnified value compared to standard Si/NbN structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2215-8 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2015/12/FIO2016-Sbornik.pdf Разработка технологии создания резонаторных структур для увеличения квантовой эффективности NBN детекторов ИК-фотонов Approved no  
  Call Number Serial 1811  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P. url  doi
openurl 
  Title (up) Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
  Year 2014 Publication Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications  
  Volume Issue Pages 113-125  
  Keywords SIS mixer, SIR, THz imaging  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-94-017-8828-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1368  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: