toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B. url  openurl
  Title (down) Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop  
  Volume Issue Pages  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address Monterey, CA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Wold, J.; Davidson, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no  
  Call Number Serial 1829  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  openurl
  Title (down) Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop  
  Volume Issue Pages 3-24  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address  
  Corporate Author Thesis  
  Publisher NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.  
  Language Summary Language Original Title  
  Series Editor Series Title NASA CP Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Volume: 211408 Approved no  
  Call Number Serial 1537  
Permanent link to this record
 

 
Author Zolotov, P. I.; Vakhtomin, Yu. B.; Divochiy, A. V.; Seleznev, V. A.; Smirnov, K. V. url  isbn
openurl 
  Title (down) Technology development of resonator-based structures for efficiency increasing of NBN detectors of IR single photons Type Journal Article
  Year 2016 Publication Proc. 5th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 5th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 115-116  
  Keywords NbN SSPD  
  Abstract This paper presents a technology of fabrication of NbN superconductive single- photon detectors, using resonator structures. The main results are related to optimization of the process of NbN sputtering over substrate with metallic mirrors and SiO 2 /Si 3 N 4 layers /4 thick. Investigation of the quantum efficiency of fabricated devices at 1.6 K on 1.55 μm showed triple-magnified value compared to standard Si/NbN structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2215-8 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2015/12/FIO2016-Sbornik.pdf Разработка технологии создания резонаторных структур для увеличения квантовой эффективности NBN детекторов ИК-фотонов Approved no  
  Call Number Serial 1811  
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R. doi  openurl
  Title (down) Superconducting single-photon ultrathin NbN film detector Type Journal Article
  Year 2005 Publication Quantum Electronics Abbreviated Journal  
  Volume 35 Issue 8 Pages 698-700  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no  
  Call Number Serial 383  
Permanent link to this record
 

 
Author Zolotov, P.; Divochiy, A.; Vakhtomin, Y.; Seleznev, V.; Morozov, P.; Smirnov, K. url  doi
openurl 
  Title (down) Superconducting single-photon detectors made of ultra-thin VN films Type Conference Article
  Year 2018 Publication KnE Energy Abbreviated Journal KnE Energy  
  Volume 3 Issue 3 Pages 83-89  
  Keywords  
  Abstract We optimized technology of thin VN films deposition in order to study VN-based superconducting single-photon detectors. Investigation of the main VN film parameters showed that this material has lower resistivity compared to commonly used NbN. Fabricated from obtained films devices showed 100% intrinsic detection efficiency at 900 nm, at the temperature of 1.7 K starting with the bias current of 0.7·I  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: