toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I. url  doi
openurl 
  Title Concentration dependence of the intermediate frequency bandwidth of submillimeter heterodyne AlGaAs/GaAs nanostructures Type Journal Article
  Year 2010 Publication Bull. Russ. Acad. Sci. Phys. Abbreviated Journal Bull. Russ. Acad. Sci. Phys.  
  Volume 74 Issue 1 Pages 100-102  
  Keywords 2DEG AlGaAs/GaAs heterostructures, THz heterodyne detectors, IF bandwidth  
  Abstract The concentration dependence of the intermediate frequency bandwidth of heterodyne AlGaAs/GaAs detectors with 2D electron gas is measured using submillimeter spectroscopy with high time resolution at T= 4.2 K. The intermediate frequency bandwidth f3dBfalls from 245 to 145 MHz with increasing concentration of 2D electrons n s = (1.6-6.6) × 10[su11] cm-2. The dependence f3dB ≈ n s – 0.04±is observed in the studied concentration range; this dependence is determined by electron scattering by the deformation potential of acoustic phonons and piezoelectric scattering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-8738 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1217  
Permanent link to this record
 

 
Author (up) Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I. url  doi
openurl 
  Title Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons Type Journal Article
  Year 2010 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 44 Issue 11 Pages 1427-1429  
  Keywords 2DEG, AlGaAs/GaAs heterostructures mixers  
  Abstract The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dB ∝ n −0.5 s due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Полоса и потери преобразования полупроводникового смесителя с фононным каналом охлаждения двумерных электронов Approved no  
  Call Number Serial 1216  
Permanent link to this record
 

 
Author (up) Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
  Year 2000 Publication JETP Lett. Abbreviated Journal JETP Lett.  
  Volume 71 Issue 1 Pages 31-34  
  Keywords 2DEG, GaAs/AlGaAs heterostructures  
  Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no  
  Call Number Serial 1559  
Permanent link to this record
 

 
Author (up) Verevkin, A. A.; Pearlman, A.; Slysz, W.; Zhang, J.; Sobolewski, R.; Chulkova, G.; Okunev, O.; Kouminov, P.; Drakinskij, V.; Smirnov, K.; Kaurova, N.; Voronov, B.; Gol’tsman, G.; Currie, M. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5105 Issue Pages 160-170  
  Keywords NbN SSPD, SNSPD, applications, single-photon detector, quantum cryptography, quantum communications, superconducting devices  
  Abstract We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 – 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Donkor, E.; Pirich, A.R.; Brandt, H.E.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Information and Computation  
  Notes Approved no  
  Call Number Serial 1514  
Permanent link to this record
 

 
Author (up) Verevkin, A. A.; Ptitsina, N. G.; Chulcova, G. M.; Gol'Tsman, G. N.; Gershenzon, E. M.; Yngvesson, K. S. url  doi
openurl 
  Title Determination of the limiting mobility of a two-dimensional electron gas in AlxGa1-xAs/GaAs heterostructures and direct measurement of the energy relaxation time Type Journal Article
  Year 1996 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.  
  Volume 53 Issue 12 Pages R7592-R7595  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract We present results for a method to measure directly the energy relaxation time (τe) for electrons in a single AlxGa1−xAs/GaAs heterojunction; measurements were performed from 1.6 to 15 K under quasiequilibrium conditions. We find τeαT−1 below 4 K, and τe independent of T above 4 K. We have also measured the energy-loss rate, ⟨Q⟩, by the Shubnikov-de Haas technique, and find ⟨Q⟩α(T3e−T3) for T<~4.2 K; Te is the electron temperature. The values and temperature dependence of τe and ⟨Q⟩ for T<4 K agree with calculations based on piezoelectric and deformation potential acoustic phonon scattering. At 4.2 K, we can also estimate the momentum relaxation time, τm, from our measured τe. This leads to a preliminary estimate of the phonon-limited mobility at 4.2 K of μ=3×107 cm2/Vs (ns=4.2×1011 cm−2), which agrees well with published numerical calculations, as well as with an earlier indirect estimate based on measurements on a sample with much higher mobility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9982274 Approved no  
  Call Number Serial 1612  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: